Skip to main content
Log in

Comparison of systemic and local interactions between the arbuscular mycorrhizal fungus Funneliformis mosseae and the root pathogen Aphanomyces euteiches in Medicago truncatula

  • Original Paper
  • Published:
Mycorrhiza Aims and scope Submit manuscript

Abstract

It has been shown in a number of pathosystems that arbuscular mycorrhizal (AM) fungi confer resistance against root pathogens, including in interactions between Medicago truncatula and the root rot-causing oomycete Aphanomyces euteiches. For the current study of these interactions, a split root system was established for plant marker gene analysis in order to study systemic defense responses and to compare them with local interactions in conventional pot cultures. It turned out, however, that split root systems and pot cultures were in different physiological stages. Genes for pathogenesis-related proteins and for enzymes involved in flavonoid biosynthesis were generally more highly expressed in split root systems, accompanied by changes in RNA accumulation for genes encoding enzymes involved in phytohormone biosynthesis. Against expectations, the pathogen showed increased activity in these split root systems when the AM fungus Funneliformis mosseae was present separately in the distal part of the roots. Gene expression analysis revealed that this is associated in the pathogen-infected compartment with a systemic down-regulation of a gene coding for isochorismate synthase (ICS), a key enzyme of salicylic acid biosynthesis. At the same time, transcripts of genes encoding pathogenesis-related proteins and for enzymes involved in the biosynthesis of flavonoids accumulated to lower levels. In conventional pot cultures showing decreased A. euteiches activity in the presence of the AM fungus, the ICS gene was down regulated only if both the AM fungus and the pathogen were present in the root system. Such negative priming of salicylic acid biosynthesis could result in increased activities of jasmonate-regulated defense responses and could explain mycorrhiza-induced resistance. Altogether, this study shows that the split root system does not reflect a systemic interaction between F. mosseae and A. euteiches in M. truncatula and indicates the importance of testing such systems prior to the analysis of mycorrhiza-induced resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aoki T, Akashi T, Ayabe S (2000) Flavonoids of leguminous plants: structure, biological activity, and biosynthesis. J Plant Res 113:475–488

    Article  Google Scholar 

  • Azcon-Aguilar C, Barea JM (1996) Arbuscular mycorrhizas and biological control of soil-borne plant pathogens - an overview of the mechanisms involved. Mycorrhiza 6:457–464

    Article  Google Scholar 

  • Baltruschat H, Schoenbeck F (1975) The influence of endotrophic mycorrhiza on the infestation of tobacco by Thielaviopsis basicola. J Phytopathol 84:172–188

    Article  CAS  Google Scholar 

  • Bari R, Jones J (2009) Role of plant hormones in plant defence responses. Plant Mol Biol 69:473–488

    Article  CAS  PubMed  Google Scholar 

  • Becard G, Fortin JA (1988) Early events of vesicular-arbuscular mycorrhiza formation on Ri T-DNA transformed roots. New Phytol 108:211–218

    Article  CAS  Google Scholar 

  • Blount JW, Dixon RA, Paiva NL (1992) Stress responses in alfalfa (Medicago sativa L).16. Antifungal activity of medicarpin and its biosynthetic precursors - implications for the genetic manipulation of stress metabolites. Physiol Mol Plant Pathol 41:333–349

    Article  CAS  Google Scholar 

  • Bodker L, Kjoller R, Kristensen K, Rosendahl S (2002) Interactions between indigenous arbuscular mycorrhizal fungi and Aphanomyces euteiches in field-grown pea. Mycorrhiza 12:7–12

    Article  CAS  PubMed  Google Scholar 

  • Borowicz VA (2001) Do arbuscular mycorrhizal fungi alter plant-pathogen relations? Ecology 82:3057–3068

    Google Scholar 

  • Campos-Soriano L, Garcia-Martinez J, Segundo BS (2012) The arbuscular mycorrhizal symbiosis promotes the systemic induction of regulatory defence-related genes in rice leaves and confers resistance to pathogen infection. Mol Plant Pathol 13:579–592

    Article  CAS  PubMed  Google Scholar 

  • Castellanos-Morales V, Keiser C, Cardenas-Navarro R, Grausgruber H, Glauninger J, Garcia-Garrido JM, Steinkellner S, Sampedro I, Hage-Ahmed K, Illana A, Ocampo JA, Vierheilig H (2011) The bioprotective effect of AM root colonization against the soil-borne fungal pathogen Gaeumannomyces graminis var. tritici in barley depends on the barley variety. Soil Biol Biochem 43:831–834

    Article  CAS  Google Scholar 

  • Cerenius L, Rufelt S, Soderhall K (1992) Effects of ampropylfos ((rs)-1-aminopropylphosphonic acid) on zoospore formation, repeated zoospore emergence and oospore formation in Aphanomyces spp. Pesticide Sci 36:189–194

    Article  CAS  Google Scholar 

  • Colditz F, Nyamsuren O, Niehaus K, Eubel H, Braun HP, Krajinski F (2004) Proteomic approach: Identification of Medicago truncatula proteins induced in roots after infection with the pathogenic oomycete Aphanomyces euteiches. Plant Mol Biol 55:109–120

    Article  CAS  PubMed  Google Scholar 

  • Colditz F, Braun HP, Jacquet C, Niehaus K, Krajinski F (2005) Proteomic profiling unravels insights into the molecular background underlying increased Aphanomyces euteiches tolerance of Medicago truncatula. Plant Mol Biol 59:387–406

    Article  CAS  PubMed  Google Scholar 

  • Cordier C, Pozo MJ, Barea JM, Gianinazzi S, Gianinazzi-Pearson V (1998) Cell defense responses associated with localized and systemic resistance to Phytophthora parasitica induced in tomato by an arbuscular mycorrhizal fungus. Mol Plant-Microbe Interact 11:1017–1028

    Article  CAS  Google Scholar 

  • de la Noval B, Perez E, Martinez B, Leon O, Martinez-Gallardo N, Delano-Frier J (2007) Exogenous systemin has a contrasting effect on disease resistance in mycorrhizal tomato (Solanum lycopersicum) plants infected with necrotrophic or hemibiotrophic pathogens. Mycorrhiza 17:449–460

    Article  PubMed  Google Scholar 

  • de la Pena E, Rodriguez-Echeverria S, van der Putten WH, Freitas H, Moens M (2006) Mechanism of control of root-feeding nematodes by mycorrhizal fungi in the dune grass Ammophila arenaria. New Phytol 169:829–840

    Article  PubMed  Google Scholar 

  • Djebali N, Jauneau A, Ameline-Torregrosa C, Chardon F, Jaulneau V, Mathe C, Bottin A, Cazaux M, Pilet-Nayel ML, Baranger A, Aouani ME, Esquerre-Tugaye MT, Dumas B, Huguet T, Jacquet C (2009) Partial resistance of Medicago truncatula to Aphanomyces euteiches is associated with protection of the root stele and is controlled by a major QTL rich in proteasome-related genes. Mol Plant-Microbe Interact 22:1043–1055

    Article  CAS  PubMed  Google Scholar 

  • Dugassa GD, vonAlten H, Schonbeck F (1996) Effects of arbuscular mycorrhiza (AM) on health of Linum usitatissimum L infected by fungal pathogens. Plant Soil 185:173–182

    Article  CAS  Google Scholar 

  • Elsen A, Gervacio D, Swennen R, De Waele D (2008) AMF-induced biocontrol against plant parasitic nematodes in Musa sp.: a systemic effect. Mycorrhiza 18:251–256

    Article  CAS  PubMed  Google Scholar 

  • Franken P, Donges K, Grunwald U, Kost G, Rexer KH, Tarnasloukht M, Waschke A, Zeuske D (2007) Gene expression analysis of arbuscule development and functioning. Phytochemistry 68:68–74

    Article  CAS  PubMed  Google Scholar 

  • Gallou A, Mosquera HPL, Cranenbrouck S, Suarez JP, Declerck S (2011) Mycorrhiza induced resistance in potato plantlets challenged by Phytophthora infestans. Physiol Mol Plant Pathol 76:20–26

    Article  CAS  Google Scholar 

  • Grunwald U, Guo WB, Fischer K, Isayenkov S, Ludwig-Muller J, Hause B, Yan XL, Küster H, Franken P (2009) Overlapping expression patterns and differential transcript levels of phosphate transporter genes in arbuscular mycorrhizal, Pi-fertilised and phytohormone-treated Medicago truncatula roots. Planta 229:1023–1034

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Guillon C, St-Arnaud M, Hamel C, Jabaji-Hare SH (2002) Differential and systemic alteration of defence-related gene transcript levels in mycorrhizal bean plants infected with Rhizoctonia solani. Can J Bot 80:305–315

    Article  CAS  Google Scholar 

  • Hamon C, Baranger A, Miteul H, Lecointe R, Le Goff I, Deniot G, Onfroy C, Moussart A, Prosperi JM, Tivoli B, Delourme R, Pilet-Nayel ML (2010) A complex genetic network involving a broad-spectrum locus and strain-specific loci controls resistance to different pathotypes of Aphanomyces euteiches in Medicago truncatula. Theor Appl Genet 120:955–970

    Article  PubMed  Google Scholar 

  • Hamon C, Baranger A, Coyne CJ, Mcgee RJ, Le Goff I, L'Anthoene V, Esnault R, Riviere JP, Klein A, Mangin P, Mcphee KE, Roux-Duparque M, Porter L, Miteul H, Lesne A, Morin G, Onfroy C, Moussart A, Tivoli B, Delourme R, Pilet-Nayel ML (2011) New consistent QTL in pea associated with partial resistance to Aphanomyces euteiches in multiple French and American environments. Theor Appl Genet 123:261–281

    Article  PubMed  Google Scholar 

  • Hao ZP, Fayolle L, Van Tuinen D, Chatagnier O, Li XL, Gianinazzi S, Gianinazzi-Pearson V (2012) Local and systemic mycorrhiza-induced protection against the ectoparasitic nematode Xiphinema index involves priming of defence gene responses in grapevine. J Exp Bot 63:3657–3672

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Harrison MJ, Dixon RA (1993) Isoflavonoid accumulation and expression of defense gene transcripts during the establishment of vesicular-arbuscular mycorrhizal associations in roots of Medicago truncatula. Mol Plant-Microbe Interact 6:643–654

    Article  CAS  Google Scholar 

  • Harrison MJ, Dixon RA (1994) Spatial patterns of expression of flavonoid/isoflavonoid pathway genes during interactions between roots of Medicago truncatula and the mycorrhizal fungus Glomus versiforme. Plant J 6:9–20

    Article  CAS  Google Scholar 

  • Herrera-Medina MJ, Steinkellner S, Vierheilig H, Bote JAO, Garrido JMG (2007) Abscisic acid determines arbuscule development and functionality in the tomato arbuscular mycorrhiza. New Phytol 175:554–564

    Article  CAS  PubMed  Google Scholar 

  • Hilou A, Zhang H, Franken P, Hause B (2013) Do jasmonates play a role in arbuscular mycorrhiza-induced local bioprotection of Medicago truncatula against root rot disease caused by Aphanomyces euteiches? Mycorrhiza. doi:10.1007/s00572-013-0513-z

    PubMed  Google Scholar 

  • Jung SC, Martinez-Medina A, Lopez-Raez JA, Pozo MJ (2012) Mycorrhiza-induced resistance and priming of plant defenses. J Chem Ecol 38:651–664

    Article  CAS  PubMed  Google Scholar 

  • Kassaw TK, Frugoli JA (2012) Simple and efficient methods to generate split roots and grafted plants useful for long-distance signaling studies in Medicago truncatula and other small plants. Plant Method 8: doi: 10.1186/1746-4811-8-38

  • Li YH, Yanagi A, Miyawaki Y, Okada T, Matsubara Y (2010) Disease tolerance and changes in antioxidative abilities in mycorrhizal strawberry plants. J Japan Soc Hort Sci 79:174–178

    Article  Google Scholar 

  • Linthorst HJM (1991) Pathogenesis-related proteins of plants. Crit Rev Plant Sci 10:123–150

    Article  CAS  Google Scholar 

  • Liu JY, Maldonado-Mendoza I, Lopez-Meyer M, Cheung F, Town CD, Harrison MJ (2007) Arbuscular mycorrhizal symbiosis is accompanied by local and systemic alterations in gene expression and an increase in disease resistance in the shoots. Plant J 50:529–544

    Article  CAS  PubMed  Google Scholar 

  • Meixner C, Ludwig-Muller J, Miersch O, Gresshoff P, Staehelin C, Vierheilig H (2005) Lack of mycorrhizal autoregulation and phytohormonal changes in the supernodulating soybean mutant nts1007. Planta 222:709–715

    Article  CAS  PubMed  Google Scholar 

  • Moore JW, Loake GJ, Spoel SH (2011) Transcription dynamics in plant immunity. Plant Cell 23:2809–2820

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Nyamsuren O, Colditz F, Rosendahl S, Tamasloukht M, Bekel T, Meyer F, Kuester H, Franken P, Krajinski F (2003) Transcriptional profiling of Medicago truncatula roots after infection with Aphanomyces euteiches (oomycota) identifies novel genes upregulated during this pathogenic interaction. Physiol Mol Plant Pathol 63:17–26

    Article  CAS  Google Scholar 

  • Oyarzun P, Gerlagh M, Hoagland AE (1993) Pathogenic fungi involved in root-rot of peas in the Netherlands and their physiological specialization. Neth J Plant Pathol 99:23–33

    Article  Google Scholar 

  • Pfender WF, Hagedorn DJ (1983) Disease progress and yield loss in Aphanomyces root rot of peas. Phytopathology 73:1109–1113

    Article  Google Scholar 

  • Pieterse CMJ, Leon-Reyes A, Van der Ent S, Van Wees SCM (2009) Networking by small-molecule hormones in plant immunity. Nat Chem Biol 5:308–316

    Article  CAS  PubMed  Google Scholar 

  • Pilet-Nayel ML, Prosperi JM, Hamon C, Lesne A, Lecointe R, Le Goff I, Herve M, Deniot G, Delalande M, Huguet T, Jacquet C, Baranger A (2009) AER1, a major gene conferring resistance to Aphanomyces euteiches in Medicago truncatula. Phytopathology 99:203–208

    Article  CAS  PubMed  Google Scholar 

  • Pozo MJ, Azcon-Aguilar C (2007) Unraveling mycorrhiza-induced resistance. Curr Opin Plant Biol 10:393–398

    Article  CAS  PubMed  Google Scholar 

  • Ririe KM, Rasmussen RT, Wittwer CT (1997) Product differentiation by analysis of DNA melting curves during the polymerase chain reaction. Analyt Biochem 245:154–160

    Article  CAS  PubMed  Google Scholar 

  • Rosendahl S (1985) Interactions between the vesicular arbuscular mycorrhizal fungus Glomus fasciculatum and Aphanomyces euteiches root rot of peas. J Phytopathol 114:31–40

    Article  Google Scholar 

  • Samac DA, Penuela S, Schnurr JA, Hunt EN, Foster-Hartnett D, VandenBosch KA, Gantt JS (2011) Expression of coordinately regulated defence response genes and analysis of their role in disease resistance in Medicago truncatula. Mol Plant Pathol 12:786–798

    Article  CAS  PubMed  Google Scholar 

  • Schwarz D, Welter S, George E, Franken P, Lehmann K, Weckwerth W, Dolle S, Worm M (2011) Impact of arbuscular mycorrhizal fungi on the allergenic potential of tomato. Mycorrhiza 21:341–349

    Article  PubMed  Google Scholar 

  • Slezack S, Dumas-Gaudot E, Rosendahl S, Kjoller R, Paynot M, Negrel J, Gianinazzi S (1999) Endoproteolytic activities in pea roots inoculated with the arbuscular mycorrhizal fungus Glomus mosseae and/or Aphanomyces euteiches in relation to bioprotection. New Phytol 142:517–529

    Article  Google Scholar 

  • Smith SE, Read DJ (2008) Mycorrhizal symbiosis. Academic Press, London

    Google Scholar 

  • Thygesen K, Larsen J, Bodker L (2004) Arbuscular mycorrhizal fungi reduce development of pea root-rot caused by Aphanomyces euteiches using oospores as pathogen inoculum. Europ J Plant Pathol 110:411–419

    Article  CAS  Google Scholar 

  • Trouvelot A, Kough JL, Gianinazzi-Pearson V (1986) Mesure du taux de mycorhization VA d'un système radiculaire. Recherche des méthodes d'estimation ayant une signification fonctionnelle. In: Gianinazzi-Pearson V, Gianinazzi S (eds) The mycorrhizae: physiology and genetic. INRA Presse, Paris, pp 217–221

    Google Scholar 

  • Van Loon LC, Rep M, Pieterse CMJ (2006) Significance of inducible defense-related proteins in infected plants. Annual Rev Phytopathol 44:135–162

    Article  Google Scholar 

  • Vierheilig H, Alt M, Lange J, Gut-Rella M, Wiemken A, Boller T (1995) Colonization of transgenic tobacco constitutively expressing pathogenesis-related proteins by the vesicular-arbuscular mycorrhizal fungus Glomus mosseae. Appl Environ Microbiol 61:3031–3034

    CAS  PubMed Central  PubMed  Google Scholar 

  • Viola R, Davies HV (1992) A microplate reader assay for rapid enzymatic quantification of sugars in potato tubers. Potato Res 35:55–58

    Article  CAS  Google Scholar 

  • Vos CM, Tesfahun AN, Panis B, De Waele D, Elsen A (2012) Arbuscular mycorrhizal fungi induce systemic resistance in tomato against the sedentary nematode Meloidogyne incognita and the migratory nematode Pratylenchus penetrans. Appl Soil Biol 61:1–6

    Article  Google Scholar 

  • Whipps JM (2004) Prospects and limitations for mycorrhizas in biocontrol of root pathogens. Can J Bot 82:1198–1227

    Article  Google Scholar 

  • Zhang GY, Raza W, Wang XH, Ran W, Shen QR (2012) Systemic modification of cotton root exudates induced by arbuscular mycorrhizal fungi and Bacillus vallismortis HJ-5 and their effects on Verticillium wilt disease. Appl Soil Biol 61:85–91

    Article  CAS  Google Scholar 

  • Zhu HH, Yao Q (2004) Localized and systemic increase of phenols in tomato roots induced by Glomus versiforme inhibits Ralstonia solanacearum. J Phytopathol 152:537–542

    Article  CAS  Google Scholar 

  • Zsögön A, Lambais MR, Benedito VA, Figueira AVD, Peres LEP (2008) Reduced arbuscular mycorrhizal colonization in tomato ethylene mutants. Sci Agric 65:259–267

    Article  Google Scholar 

Download references

Acknowledgements

H. Zhang was supported by the China Scholarship Council. All experimental work was funded by the Ministries of Consumer Protection, Food and Agriculture of the Federal Republic of Germany, of the Land Brandenburg and of the Land Thüringen. We thank Saskia Welter and Bettina Hause for the critical reading and fruitful discussion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philipp Franken.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Fig. S1

(PPTX 81 kb)

(PPTX 79 kb)

(PPTX 74 kb)

Fig. S2

(PPTX 77 kb)

(PPTX 76 kb)

(PPTX 71 kb)

Fig. S3

(PPTX 154 kb)

Fig. S4

(PPTX 146 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, H., Franken, P. Comparison of systemic and local interactions between the arbuscular mycorrhizal fungus Funneliformis mosseae and the root pathogen Aphanomyces euteiches in Medicago truncatula . Mycorrhiza 24, 419–430 (2014). https://doi.org/10.1007/s00572-013-0553-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00572-013-0553-4

Keywords

Navigation