Skip to main content
Log in

Trace Metals in Microcrustaceans and Brazilian Waterweed from a Contaminated Chilean Wetland Using Total Reflection X-Ray Fluorescence Spectrometry

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract.

The trace element content of individual copepod specimens and of the Brazilian water weed (Egeria densa) from a metal-contaminated wetland in Southern Chile were determined using total reflection X-ray fluorescence spectrometry. Sampling of the water and the organisms was carried out at three sampling sites during 2004. Enhanced concentrations of dissolved Fe and Mn were found in the column water and in the pore water. The Fe content in the benthic copepods was significantly elevated compared to other aquatic organisms from different Chilean lakes. Regarding E. densa, healthy (green coloured) plants showed mass fractions of Fe, Mn, Ni, Cu and Zn which were typical for uncontaminated systems. In contrast, damaged (brownish coloured) plants exhibited very high Fe and Mn concentrations indicative of contamination or processes which changed the element load from the environment to the plant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • C Y Chen R S Stemberger B Klaue J D Blum P C Pickhardt C L Folt (2000) Limnol Oceanogr 45 1525 Occurrence Handle1:CAS:528:DC%2BD3cXosFymt7w%3D Occurrence Handle10.4319/lo.2000.45.7.1525

    Article  CAS  Google Scholar 

  • I H Ni W X Wang Y K Tam (2000) Mar Ecol Prog Ser 194 203 Occurrence Handle1:CAS:528:DC%2BD3cXjvVWiur0%3D

    CAS  Google Scholar 

  • B S Twining N S Fisher (2004) Limnol Oceanogr 49 IssueID1 28 Occurrence Handle1:CAS:528:DC%2BD2cXhsVeltrc%3D Occurrence Handle10.4319/lo.2004.49.1.0028

    Article  CAS  Google Scholar 

  • R Eisler (2000) Handbook of chemical risk assessment: health hazards to humans, plants, and animals Lewis Publishers Boca Raton 1903

    Google Scholar 

  • S V Matagi D Swia R Mugabe (1998) Afr J Trop Hydrobiol Fish 8 23

    Google Scholar 

  • P A Chapman F Wang (2001) Environ Toxicol Chem 20 3 Occurrence Handle1:CAS:528:DC%2BD3MXitlOg Occurrence Handle10.1897/1551-5028(2001)020<0003:ASCIE>2.0.CO;2

    Article  CAS  Google Scholar 

  • O Ravera (2001) J Limnol [Suppl] 60 63

    Google Scholar 

  • S Woelfl M Mages S Mercado L Villalobos M Óvári F Encina (2004) Anal Bioanal Chem 378 1088 Occurrence Handle1:CAS:528:DC%2BD2cXhsVOqt78%3D Occurrence Handle10.1007/s00216-003-2273-7

    Article  CAS  Google Scholar 

  • A Farkas J Salánki I Varanka (2003) Hydrobiologia 506–509 359 Occurrence Handle10.1023/B:HYDR.0000008615.86330.1d

    Article  Google Scholar 

  • M Mages S Woelfl W v. Tuempling (2001) Spectrochim Acta B 56 2209 Occurrence Handle10.1016/S0584-8547(01)00325-1

    Article  Google Scholar 

  • S Woelfl M Mages F Encina (2003) Spectrochim Acta B 58 2157 Occurrence Handle10.1016/S0584-8547(03)00196-4 Occurrence Handle1:CAS:528:DC%2BD3sXpslygtL8%3D

    Article  CAS  Google Scholar 

  • P Quevauviller K Vercoutere H Muntau B Griepink (1993) Fresenius J Anal Chem 345 12 Occurrence Handle1:CAS:528:DyaK3sXmtlemtr0%3D Occurrence Handle10.1007/BF00323319

    Article  CAS  Google Scholar 

  • Zar J (1998) Biostatistical analysis, 2nd edn. Prentice-Hall, p 929

  • Miller JC, Miller JN (2000) Statistics and chemometrics for analytical chemistry, 4th edn. Prentice Hall, p 320

  • A Von Bohlen R Klockenkämper J Messerschmidt F Alt (2002) Anal Chim Acta 451 279 Occurrence Handle1:CAS:528:DC%2BD38XkvF2qsQ%3D%3D Occurrence Handle10.1016/S0003-2670(01)01424-6

    Article  CAS  Google Scholar 

  • S S Simpson G E Batley (2003) Environ Toxicol Chem 22 IssueID2 424 Occurrence Handle1:CAS:528:DC%2BD3sXntVektA%3D%3D Occurrence Handle10.1897/1551-5028(2003)022<0424:DTMPDT>2.0.CO;2

    Article  CAS  Google Scholar 

  • Y Xu W X Wang D P H Hsieh (2001) Environ Toxicol Chem 20 1067 Occurrence Handle1:CAS:528:DC%2BD3MXjsFaqur8%3D Occurrence Handle10.1897/1551-5028(2001)020<1067:IOMCIP>2.0.CO;2

    Article  CAS  Google Scholar 

  • M R Correa E D Velini D P Arruda (2003) Planta Daninha Vicosa-MG 21 7

    Google Scholar 

  • M A Kähkonen M Pantsar-Kallio P K G Manninen (1997) Chemosphere 35 2645 Occurrence Handle10.1016/S0045-6535(97)00337-8

    Article  Google Scholar 

  • F S Adam H Cole L B Massie (1973) Environ Pollut 5 117 Occurrence Handle10.1016/0013-9327(73)90016-5

    Article  Google Scholar 

  • R Snowden B D Wheeler (1995) New Phytol 131 503 Occurrence Handle1:CAS:528:DyaK28XovVGqtA%3D%3D Occurrence Handle10.1111/j.1469-8137.1995.tb03087.x

    Article  CAS  Google Scholar 

  • A Samecka-Cymerman A J Kempers (2003) Water Air Soil Pollut 145 IssueID1 139 Occurrence Handle1:CAS:528:DC%2BD3sXjsFWitLg%3D Occurrence Handle10.1023/A:1023632229312

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Woelfl.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Woelfl, S., Mages, M., Encina, F. et al. Trace Metals in Microcrustaceans and Brazilian Waterweed from a Contaminated Chilean Wetland Using Total Reflection X-Ray Fluorescence Spectrometry. Microchim Acta 154, 261–268 (2006). https://doi.org/10.1007/s00604-006-0519-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-006-0519-8

Navigation