Skip to main content

Advertisement

Log in

Aptamer based voltammetric biosensor for the detection of Mycobacterium tuberculosis antigen MPT64

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

The authors report an aptaelectrode based on graphene modified iron-oxide chitosan hybrid (CHIT-IO-GR) nanocomposite film deposited on fluorine tin oxide (FTO) for the detection of the Mycobacterium tuberculosis specific antigen MPT64. The biotinylated DNA aptamer sequence specific to the MPT64 was immobilized onto the CHIT-IO-GR/FTO electrode by using streptavidin-biotin interactions. XRD, FT-IR, FE-SEM and electrochemical studies were applied to monitor the steps of the fabrication. The aptaelectrode, operated best at typical voltage of 0.44 V, exhibited a limit of detection (LOD) of 0.9 fg⋅mL−1 within 20 min. The biosensor retained about 80% of its initial activity after 10 uses. The potential application of the aptasensor was established by spike-in studies to obtain recoveries between 83 and 95%.

An electrochemical aptaelectrode based on nanocomposite consisting of chitosan (CHIT), iron-oxide nanoparticles (IO) and functionalized graphene (GR) has been fabricated to detect M. tb antigen MPT64 with an LOD of 0.9 fg∙mL−1 within 20 min.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. WHO report (2015)

  2. Steingart KR, Ramsay A, Dowdy DW, Pai M (2012) Serological tests for the diagnosis of active tuberculosis: relevance for India. Indian J Med Res 135:695–702

    Google Scholar 

  3. Wilson ML (2011) Recent advances in the laboratory detection of mycobacterium tuberculosis complex and drug resistance. Clin Infect Dis 52:1350–1355

    Article  Google Scholar 

  4. Rafati A, Gill P (2015) Microfluidic method for rapid turbidimetric detection of the DNA of mycobacterium tuberculosis using loop-mediated isothermal amplification in capillary tubes. Microchim Acta 182:523–530

    Article  CAS  Google Scholar 

  5. Wang J, Rivas G, Cai X, Dontha N, Shiraishi H, Luo D, Valera DL (1997) Sequence-specific electrochemical biosensing of M. tuberculosis DNA. Anal Chim Acta 337:41–48

    Article  CAS  Google Scholar 

  6. Prabhakar N, Solanki PR, Kaushik A, Pandey MK, Malhotra BD (2010) Peptide nucleic acid immobilized biocompatible silane Nano composite platform for Mycobacterium tuberculosis detection. Electroanalysis 22:2672–2682

    Article  CAS  Google Scholar 

  7. Thiruppathiraja C, Kamatchiammal S, Adaikkappan P, Santhosh DJ, Alagar M (2011) Specific detection of mycobacterium sp. genomic DNA using dual labeled gold nanoparticle based electrochemical biosensor. Anal Biochem 417:73–79

    Article  CAS  Google Scholar 

  8. Prabhakar N, Arora K, Arya SK, Solanki PR, Iwamoto M, Singh H, Malhotra BD (2008) Nucleic acid sensor for M. tuberculosis detection based on surface plasmon resonance. Analyst 133:1587–1592

    Article  CAS  Google Scholar 

  9. Liu C, Jiang D, Xiang G, Liu L, Liu F, Pu X (2014) An electrochemical DNA biosensor for the detection of mycobacterium tuberculosis, based on signal amplification of graphene and a gold nanoparticle–polyaniline nanocomposite. Analyst 139:5460

    Article  CAS  Google Scholar 

  10. Choudhary V, Saxena RK (2002) Detection of mycobacterium tuberculosis antigens in urinary proteins of tuberculosis patients. Eur J Clin Microbiol Infect Dis 21:1–5

    Article  Google Scholar 

  11. Diaz-Gonzalez M, Gonz’alez-Garc’ıa MB, Costa-Garc’ıa A (2005) Immunosensor for Mycobacterium tuberculosis on screen-printed carbon electrodes. Biosens Bioelectron 20:2035–2043

  12. Shojaeia TR, Salleha MAM, Tabatabaeib M, Ekramic A, Motallebid R, Cherati TR, Hajaliloua A, Jorfia R (2014) Development of sandwich-form biosensor to detect Mycobacterium tuberculosis complex in clinical sputum specimens. Brazj Infect Dis 18:600–608

    Article  Google Scholar 

  13. Huang H, Li J, Shi S, Yan Y, Zhang M, Wang P, Zeng G, Jiang Z (2015) Detection of interferon-gamma for latent tuberculosis diagnosis using an immunosensor based on CdS quantum dots coupled to magnetic beads as labels. Int J Electrochem Sci 10:2580–2593

    CAS  Google Scholar 

  14. Alula MT, Krishnan S, Hendricks NR, Karamchand L, Blackburn JM (2017) Identification and quantitation of pathogenic bacteria via in-situ formation of silver nanoparticles on cell walls, and their detection via SERS. Microchim Acta 184:219–227

    Article  CAS  Google Scholar 

  15. Ren J, He F, Yi S, Cui X (2008) A new MSPQC for rapid growth and detection of Mycobacterium tuberculosis. Biosens Bioelectron 24:403–409

    Article  CAS  Google Scholar 

  16. Jayasena SD (1999) Aptamers: an emerging class of molecules that rival antibodies in diagnostics. Clin Chem 45:628–1650

    Google Scholar 

  17. Roche PW, Triccas JA, Avery DT, Fifis T, Jacobe HB, Britton WJJ (1994) Differential T cell responses to mycobacteria-secreted proteins distinguish vaccination with Bacille Calmette-Guerin from infection with Mycobacterium tuberculosis. Infect Dis 170:1326–1330

    Article  CAS  Google Scholar 

  18. Yang H, Liu ZH, Zhang LT, Wang J, Yang HS, Qin LH, Jin RL, Feng YH, Cui ZH, Zheng RJ, Hu ZY (2011) Selection and application of peptide mimotopes of MPT64 protein in mycobacterium tuberculosis. J Med Microbiol 60:69–74

    Article  CAS  Google Scholar 

  19. Ronkainen NJ, Halsall HB, Heineman WR (2010) Electrochemical biosensor. Chem Soc Rev 39:1747–1763

    Article  CAS  Google Scholar 

  20. Kong RM, Zhang XB, Chen Z, Tan W (2011) Aptamer-assembled nanomaterials for biosensing and biomedical applications. Small 7:2428–2436

    CAS  Google Scholar 

  21. Tiwari I, Singh M, Pandey CM, Summana G (2015) Electrochemical genosensor based on graphene oxide modified iron oxide–chitosan hybrid Nano composite for pathogen detection. Sensor Actuat B-Chem 206:276–283

    Article  CAS  Google Scholar 

  22. Thakur H, Kaur N, Prabhakar N (2014) Metal oxide nanoparticles embedded chitosan matrix for electrochemical detection of DNA hybridization. Bionanosc 4:322–328

    Article  Google Scholar 

  23. Reddy KR, Lee KP, Iyengar AG (2007) Synthesis and characterization of novel conducting composites of Fe3O4 nanoparticles and sulfonated polyanilines. J Appl Polym Sci 104:4127–4134

    Article  CAS  Google Scholar 

  24. Koev ST, Dykstra PH, Luo X, Rubloff GW, Bentley WE, Payne GF, Ghodssi R (2010) Chitosan: an integrative biomaterial for lab-on-a-chip devices. Lab Chip 10:3026–3042

    Article  CAS  Google Scholar 

  25. Hasanzadeh M, Shadjou N, dela Guardia M (2015) Iron and iron-oxide magnetic nanoparticles as signal-amplification elements in electrochemical biosensing. TrAC 72:1–9

    CAS  Google Scholar 

  26. Kaushik A, Solanki PR, Ansari AA, Ahmad S, Malhotra BD (2008) Chitosan–iron oxide nanobiocomposite based immunosensor for ochratoxin-a. Electrochem Commun 10:1364–1368

    Article  CAS  Google Scholar 

  27. Shan C, Yanga H, Hana D, Zhanga Q, Ivaskab A, Niua L (2010) Graphene/AuNPs/chitosan nanocomposites film for glucose biosensing. Biosens Bioelectron 25:1070–1074

    Article  CAS  Google Scholar 

  28. Radhapyari K, Kotoky P, Das MR, Khan R (2013) Graphene–polyaniline Nano composite based biosensor for detection of antimalarial drug artesunate in pharmaceutical formulation and biological fluids. Talanta 111:47–53

    Article  CAS  Google Scholar 

  29. Du D, Ding J, Cai J, Zhang A (2007) One-step electrochemically deposited interface of chitosan–gold nanoparticles for acetylcholinesterase biosensor design. J Electroanal Chem 605:53–60

    Article  CAS  Google Scholar 

  30. Suprun E, Shumyantseva V, Bulko T, Rachmetova S, Rad’ko S, Bodoev N, Archakov A (2008) Au-nanoparticles as an electrochemical sensing platform for aptamer–thrombin interaction. Biosens Bioelectron 24:825–830

    Article  CAS  Google Scholar 

  31. Kashefi-Kheyrabadi L, Mehrgardi MA (2012) Design and construction of a label free aptasensor for electrochemical detection of sodium diclofenac. Biosens Bioelectron 33:184–189

    Article  CAS  Google Scholar 

  32. Chen D, Yao D, Xie C, Liu D (2014) Development of an aptasensor for electrochemical detection of tetracycline. Food Control 42:109–115

    Article  Google Scholar 

  33. Cinti S, Basso M, Moscone D, Arduini F (2017) A paper-based nanomodified electrochemical biosensor for ethanol detection in beers. Anal Chem. doi:10.1016/j.aca.2017.01.010

    Google Scholar 

  34. Gopinath Subash CB, Perumal V, Kumaresan R, Lakshmipriya T, Rajintraprasad H, Rao BS, Arshad Md MK, Chen Y, Kotani N, Hashim U (2016) Nanogapped impedimetric immunosensor for the detection of 16 kDa heat shock protein against mycobacterium tuberculosis. Microchim Acta 183:2697–2703

    Article  Google Scholar 

  35. Liu Y, Tuleouva N, Ramanculov E, Revzin A (2010) Aptamer-based electrochemical biosensor for interferon gamma detection. Anal Chem 82:8131–8136

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work has been supported financially by DBT Project BT/PR5503/MED/29/642/2012, UGC-Start UP Grant F.20-1/2012(BSR/20-7(12/2012), and UGC-SAP F.4-7/2015/DRS-111 (SAP-11). Promotion of University Research and Scientific Excellence Programme of Department of Science and Technology (DST-Purse II) is also acknowledged for the financial support. Professor Jagdeep Kaur, Department of Biotechnology, Panjab University is also acknowledged for providing M. leprae protein to conduct interference studies. We extend our thanks to the Central Instrumentation Facility of the University to assist the characterization studies carried out during the research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nirmal Prabhakar.

Ethics declarations

The author(s) declare that they have no competing interests.

Electronic supplementary material

ESM 1

(DOC 2883 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thakur, H., Kaur, N., Sabherwal, P. et al. Aptamer based voltammetric biosensor for the detection of Mycobacterium tuberculosis antigen MPT64. Microchim Acta 184, 1915–1922 (2017). https://doi.org/10.1007/s00604-017-2174-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-017-2174-7

Keywords

Navigation