Skip to main content
Log in

Phylogeny and biogeography of Suaeda subg. Brezia (Chenopodiaceae/Amaranthaceae) in the Americas

  • Original Article
  • Published:
Plant Systematics and Evolution Aims and scope Submit manuscript

Abstract

Suaeda subg. Brezia (Chenopodiaceae/Amaranthaceae) comprises ~45 halophytic species distributed worldwide along coastlines and in saline inland habitats. Thirteen species are currently accepted from the Americas, but species delimitation is difficult due to the scarcity of distinguishing characters. Little is known yet about phylogenetic relationships and biogeography of American Brezia species. Here, we present molecular phylogenies based on DNA sequence data from the nuclear ribosomal internal transcribed spacer (ITS) and the chloroplast rpl32-trnL intergenic region. Our sampling comprised 157 accessions covering all 13 American Brezia species along with 38 accessions from 16 Eurasian taxa. Phylogenetic trees were generated using parsimony and Bayesian methods. Three monophyletic lineages were discerned in the ITS tree: the Suaeda maritima, S. prostrata and S. corniculata group. Most American species proved to belong to the S. corniculata group. Species boundaries were mostly not recovered or even contradicted by the ITS data, which could be a consequence of low sequence variation in terminal clades and/or reticulate evolution. The rpl32-trnL phylogeny was poorly resolved, with the majority of American species being part of a polytomy with few supported internal nodes. Several incongruities were found between the nuclear and chloroplast tree, revealing at least four instances of hybridization and chloroplast capture between distant lineages. Chromosome counts showed that all American species are polyploid with hexaploidy prevailing. We discuss our results in terms of species relationships, hybridization, polyploidy and biogeography with emphasis on the colonization from NE Asia and Europe, and the subsequent spread and diversification in the Americas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. 1st number—ITS, 2nd number—atpB–rbcL.

  2. Both numbers were also reported for S. calceoliformis by Ferren and Schenk (2003) but tetraploidy is most unlikely in this species because we did not find a respective record in any original publication, and all 23 counts known to us agree in 2n = 54.

References

  • Alvarado Reyes E, Flores-Olvera H (2013) Suaeda pulvinata (Chenopodiaceae), a new species from saline lakes of central Mexico. Willdenowia 43:300–314

    Google Scholar 

  • Álvarez I, Wendel JF (2003) Ribosomal ITS sequences and plant phylogenetic inference. Molec Phylogen Evol 29:417–434

    Article  Google Scholar 

  • Avise JC (1992) Molecular population structure and the biogeographic history of a regional fauna: a case history with lessons for conservation biology. Oikos 63:62–76

    Article  CAS  Google Scholar 

  • Basset IJ, Crompton CW (1978) The genus Suaeda (Chenopodiaceae) in Canada. Canad J Bot 56:581–591

    Article  Google Scholar 

  • Birdlife International (2014a) East Asia/East Africa Flyway. http://www.birdlife.org/datazone/userfiles/file/sowb/flyways/6_East_Asia_East_Africa_Factsheet. Accessed 20 November 2014

  • Birdlife International (2014b) Pacific Americas Flyway. http://www.birdlife.org/datazone/userfiles/file/sowb/flyways/1_Pacific_Americas_Factsheet. Accessed 20 November 2014

  • Blattner FR (1999) Direct amplification of the entire ITS region from poorly preserved plant material using recombinant PCR. Biotechniques 27:1180–1186

    CAS  PubMed  Google Scholar 

  • Comai L (2005) The advantages and disadvantages of being polyploid. Nat Rev Genet 6:836–846

    Article  CAS  PubMed  Google Scholar 

  • Cusimano N, Renner S (2014) Ultrametric trees or phylograms for ancestral state reconstruction: does it matter? Taxon 63:721–726

    Google Scholar 

  • Díaz-Ferguson E, Robinson JD, Silliman B, Wares JP (2010) Comparative phylogeography of North American Atlantic salt marsh communities. Estuaries Coasts 33:828–839

    Article  Google Scholar 

  • Donoghue MJ (2011) Bipolar biogeography. Proc Natl Acad Sci USA 108:6341–6342

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Doyle JJ (1992) Gene trees and species trees: molecular systematics as one-character taxonomy. Syst Bot 17:144–163

    Article  Google Scholar 

  • Ebrahimzadeh H, Ataei-Azimi A, Akhani H, Noori-Daloi MR (1994) Studies on the caryology of some species of the genus Suaeda (Chenopodiaceae) in Iran. J Sci Iran 5:81–88

    Google Scholar 

  • Feliner G, Rossello JA (2007) Better the devil you know? Guidelines for insightful utilization of nrDNA in species-level evolutionary studies in plants. Molec Phylogen Evol 44:911–919

    Article  Google Scholar 

  • Ferren WR, Roberts F (2011) The genus Suaeda (Chenopodiaceae) and conservation of estuaries in the Baja California peninsula and Sonora, Mexico. Proc CNPS Conservation Conference. Sacramento, pp 56–70

  • Ferren WR, Schenk HJ (2003) Suaeda. In: Flora of North America Edit Committee (ed) Flora of North America 4. Missouri Bot Gard St. Louis, pp 390–398

  • Ferren WR, Whitmore SA (1983) Suaeda esteroa (Chenopodiaceae), a new species from estuaries of Southern California and Baja California. Madroño 30:181–190

    Google Scholar 

  • Freitag H, Lomonosova MN (2006) Typification and identity of Suaeda crassifolia, S. prostrata and S. salsa, three often confused species of Suaeda sect. Brezia (Chenopodiaceae, Suaedoideae). Willdenowia 36:21–36

    Article  Google Scholar 

  • Freitag H, Lomonosova MN (2013) Suaeda. In: Virtual Guide to the Flora of Mongolia. http://www.greif.uni-greifswald.de/floragreif/?cat=13

  • Hopkins CO, Blackwell WH (1977) Synopsis of Suaeda (Chenopodiaceae) in North America. Sida 7:147–173

    Google Scholar 

  • Huelsenbeck JP, Ronquist F (2001) MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 17(8):754–755

    Article  CAS  PubMed  Google Scholar 

  • Hultén E (1937/1972) Outline of the history of a biota during the Quaternary period: their evolution during and after the glacial period as indicated by the equiformal progressive areas of present plant species Thule, Stockholm, repr Cramer, Lehre

  • Hultén E (1958) The amphi-atlantic plants and their phytogeographical connections. Kungl Svenska Vetenskapsakademiens Handl Ser 4, vol. 7(1). Almquist & Wiksell, Stockholm

  • Hultén E (1971) The circumpolar plants II. Dicotyledons. Kungl Svensk Vetenskap Handl Ser 4, vol. 13(1). Almquist & Wiksell, Stockholm

  • Kadereit JW, Arafeh R, Somogyi G, Westberg E (2005a) Terrestrial growth and marine dispersal? Comparative phylogeography of five coastal plant species at a European scale. Taxon 54:861–876

    Article  Google Scholar 

  • Kadereit G, Gotzek D, Jacobs S, Freitag H (2005b) Origin and age of Australian Chenopodiaceae. Org Divers Evol 5:59–80

    Article  Google Scholar 

  • Kadereit G, Ackerly D, Pirie MD (2012) A broader model for C4 photosynthesis evolution in plants inferred from the goosefoot family (Chenopodiaceae s.s.). Proc R Soc London B 279:3304–3311

    Article  Google Scholar 

  • Kapralov MV, Akhani H, Voznesenskaya EV, Edwards GE, Franceschi VR, Roalson EH (2006) Phylogenetic relationships in the Salicornioideae/Suaedoideae/Salsoloideae s.l. (Chenopodiaceae) clade and a clarification of the phylogenetic position of Bienertia and Alexandra using multiple DNA sequence datasets. Syst Bot 31:571–585

    Article  Google Scholar 

  • Krahulcová A, Tomšovic P (1997) Ploidy levels in some European representatives of the Suaeda maritima group. Preslia 69:327–332 (in Czech)

    Google Scholar 

  • Krapp F (2013) Phylogenie und Evolution der Gattung Dyckia (Bromeliaceae). Dissertation. University of Kassel, Germany

  • Lee JS, Park DS, Ihm BS, Lee WJ (2007) Taxonomic reappraisal on Suaeda australis (Chenopodiaceae) in Korea based on the morphological and molecular characteristics. J Pl Biol 50:605–614

    Article  CAS  Google Scholar 

  • Linder HP, Barker NP (2014) Does polyploidy facilitate long-distance dispersal? Ann Bot (Oxford) 113:1175–1183

    Article  Google Scholar 

  • Lomonosova MN (2011) Chromosome numbers, taxonomy and distribution of the subgenus Brezia (Suaeda, Chenopodiaceae). Turczaninowia 14:45–52 (in Russian)

    Google Scholar 

  • Lomonosova M, Freitag H (2003) A new species of Suaeda (Chenopodiaceae) from the Altai. Willdenowia 33:139–147

    Article  Google Scholar 

  • Lomonosova M, Freitag H (2008) The genus Suaeda (Chenopodiaceae) in Asian Russia. Rastitel´nyj Mir Aziatskoj Rossii 2:12–19 (in Russian)

  • Lomonosova MN, Freitag H (2009) Chenopodiaceae. In: Marhold K (ed) IAPT/IOPB chromosome data 8, vol. 58. Taxon, pp 1284

  • Lomonosova MN, Shaulo DN (2010) Karyology of the Siberian representatives of the family Chenopodiaceae. Bot Zhurn (Sankt-Peterbourg) 95:422–426 (in Russian)

  • Lomonosova MN, Krasnikov AA, Krasnikova SA (2003) Chromosome numbers of the Chenopodiaceae family members of the Kazakhstan flora. Bot Zhurn (Sankt-Peterbourg) 88:134–135 (in Russian)

  • Lomonosova MN, Krasnikova SA, Krasnikov AA, Sukhorukov AP, Bananova VA, Pavlova NS (2005) Chromosome numbers of Chenopodiaceae species from Russia and Kazakhstan. Bot Zhurn (Sankt-Peterbourg) 90:1132–1134 (in Russian)

  • Lomonosova MN, Yusupova D, Akopyan JA (2007) Chromosome numbers of the Suaeda (Chenopodiaceae) representatives. Bot Zhurn (Sankt-Peterbourg) 9:1077–1078 (in Russian)

  • Lomonosova MN, Brandt R, Freitag H (2008) Suaeda corniculata (Chenopodiaceae) and related taxa from Eurasia. Willdenowia 38:81–109

    Article  Google Scholar 

  • Lorz A (1937) Cytological investigations on five chenopodiaceous genera with special emphasis on chromosome morphology and somatic doubling in Spinacia. Cytologia 8:241–276

    Article  Google Scholar 

  • Löve A, Löve D (1982) Reports. In: Löve A (ed) IOPB chromosome number reports LXXIV, vol. 31. Taxon, pp 120–126

  • Maddison WP (1997) Gene trees in species trees. Syst Biol 46:523–536

    Article  Google Scholar 

  • Milne RI (2006) Northern Hemisphere plant disjunctions: a window on Tertiary land bridges and climate change? Ann Bot (Oxford) 98:465–472

    Article  Google Scholar 

  • Moore DM (1981) Chromosome numbers of Fuegean angiosperms. Bol Soc Brot Ser 2(53):995–1012

    Google Scholar 

  • Mulgura ME (1999) Catálogo de las plantas vasculares de la Républica Argentina 2. St. Louis

  • Müller J, Müller K, Quandt D (2011) PhyDE—Phylogenetic data editor. Version 0.9971. Program distributed by the author

  • Mulligan GA, Cody WJ (1973) Chenopodiaceae. In: Löve A (ed) IOPB Chromosome number reports XL, vol. 22. Taxon, pp 290

  • Naciri Y, Linder HP (2015) Species delimitation and relationships: the dance of the seven veils. Taxon 64:3–16

    Article  Google Scholar 

  • Noguez-Hernández R, Carballo-Carballo A, Flores-Olvera H (2013) Suaeda edulis (Chenopodiaceae), una nueva especie de lagos salinos del centro de México. Bot Sci (Mexico) 91:19–25

    Article  Google Scholar 

  • Nylander JAA (2004) MrModeltest v2. Program distributed by the author. Evolutionary Biology Centre, Uppsala University

  • Pedrol J, Castroviejo S (1988) A proposito del tratamiento taxonomico y nomenclatural del genero Suaeda Forsskål ex Scop. (Chenopodiaceae) en “Flora Iberica”. Anales Jard Bot Madrid 45:93–102

    Google Scholar 

  • Pirie MD, Humphreys AM, Barker NP, Linder HP (2009) Reticulation, data combination, and inferring evolutionary history: an example from Danthonioideae (Poaceae). Syst Biol 58:612–628

    Article  CAS  PubMed  Google Scholar 

  • Probatova NC, Rubyka EG, Sokolovskaya AP (1998) Chromosome numbers in vascular plants from islands of Peter the Great Bay and Murayava-Amurskiy Peninsula (Primorsky Krai). Bot Zhurn (Sankt-Peterbourg) 83:125–130 (in Russian)

  • Scarpino SV, Hunt PJ, Garcia-De-Leon FJ, Juenger TE, Schart M, Kirpatrick M (2013) Evolution of a genetic incompatibility in the genus Xiphophorus. Molec Biol Evol 30:2302–2310

    Article  CAS  PubMed  Google Scholar 

  • Scarpino SV, Levin DA, Meyers LA (2014) Polyploid formation shapes flowering plant diversity. Amer Naturalist 184:456–465

    Article  Google Scholar 

  • Schütze P (2011) Molekulare Systematik der Gattung Suaeda (Chenopodiaceae) und Evolution des C4-Photosynthesesyndroms. Dissertation, University of Kassel, Germany

  • Schütze P, Freitag H, Weising K (2003) An integrated molecular and morphological study of the subfamily Suaedoideae Ulbr. (Chenopodiaceae). Pl Syst Evol 239:257–286

    Article  Google Scholar 

  • Shaw J, Lickey EB, Schilling EE, Small RL (2007) Comparison of whole chloroplast genome sequences to choose noncoding regions for phylogenetic studies in angiosperms: the tortoise and the hare III. Amer J Bot 95:275–288

    Article  Google Scholar 

  • Small JK (1933) Manual of the Southeastern Flora. University of N Carolina Press, Chapel Hill

    Google Scholar 

  • Smirnov YA (1968) Accelerated method for studying somatic chromosomes in fruit trees. Tsitologiya 10:1132–1134 (in Russian)

    Google Scholar 

  • Swofford DL (2003) PAUP*. Phylogenetic analysis using parsimony (*and other methods). Version 4.0 Beta 10. Sinauer Associations, Sunderland, Massachusetts

  • Tayalé A, Parisod C (2013) Natural pathways to polyploidy in plants and consequences for genome reorganization. Cytogenet Genome Res 140:79–96

    Article  PubMed  Google Scholar 

  • Thiers B (2012) Index Herbariorum: a global directory of public herbaria and associated staff. New York Botanical Garden’s Virtual Herbarium. http://sciweb.nybg.org/science2/IndexHerbariorum.asp and http://sweetgum.nybg.org/ih/[23.XI.2012]

  • Watson MC, Ferren WR (1991) A new species of Suaeda (Chenopodiaceae) from coastal Northwestern Sonora, Mexico. Madroño 38:30–36

    Google Scholar 

  • Weising K, Freitag H (2007) Phylogeography of halophytes from European coastal and inland habitats. Zool Anz 246:279–292

    Article  Google Scholar 

  • Wen J, Ickert-Bond SM (2009) Evolution of the Madrean Tethyan disjunctions and the North and South American amphitropical disjunctions in plants. J Syst Evol 47:331–348

    Article  Google Scholar 

  • Yu Y, Harris AJ, He XJ (2010) S-DIVA (Statistical Dispersal-Vicariance Analysis): a tool for inferring biogeographic histories. Molec Phylogen Evol 56:848–850

    Article  Google Scholar 

  • Yu Y, Harris AJ, Chr Blair, He X (2015) RASP (Reconstruct ancestral state in phylogenies): a tool for historical biogeography. Molec Phylogen Evol 87:46–49

    Article  Google Scholar 

  • Zakhar’eva OI (1990) Suaeda olufsenii Pauls. In: Takhtajan A (ed) Numeri chromosomatum Magnoliophytorum Florae URSS 1. Aceraceae—Menyanthaceae. Nauka, Leningrad (in Russian)

Download references

Acknowledgments

With gratitude, we acknowledge the generous support of a large number of curators for providing herbarium specimens on loan or permitting removal of samples for molecular study in their institutions. This applies in particular to ALA, BKL, CAS, DAO, GR, IEB, LPB, NY, RENO, RSA, SD, TEX, UCSB, and UTC. Other colleagues were helpful by collecting and sending samples taken from herbarium material, as P. W. Ball (Toronto) and C. B. Villamil (Buenos Aires) or fresh material including seeds, as E. Dominguez (Punta Arenas), W. R. Ferren (Santa Barbara), S. Pfanzelt (Mainz), F. G. Schröder (Göttingen), N. Schütz (Stuttgart) and S. Zamudio (Pátzcuaro), E. Nikolin (Yakutsk); and M. Kucev (Barnaul) for providing each two ITS sequences of S. “jacutica” and S. arctica. We are also thankful to W. R. Ferren for joining and guiding our field trips in New Jersey and to J. Schenk (Fullerton), F. Roberts (San Louis Rey) and M. R. Sharifi (Long Beach) in California, as well as for pertinent discussions with the late S. E. Clemants (Brooklyn) and many others. Very kindly W. R. Ferren, E. Dominguez and H. Flores-Olvera also contributed by allocation of images, the latter also by unpublished chromosome counts. We thank the gardeners in Kassel University for their engagement in professionally cultivating American Suaeda plants. We also thank an anonymous reviewer and the editor for useful comments on earlier versions of the manuscript. The project was financially supported by the German Research Foundation (DFG) (Grant WE 1830/7-1 to K. Weising and H. Freitag) and by the Russian Foundation for Basic Research (Grant 12-04-00746 to M. Lomonosova).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kurt Weising.

Additional information

Handling editor: Marcus Koch.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brandt, R., Lomonosova, M., Weising, K. et al. Phylogeny and biogeography of Suaeda subg. Brezia (Chenopodiaceae/Amaranthaceae) in the Americas. Plant Syst Evol 301, 2351–2375 (2015). https://doi.org/10.1007/s00606-015-1233-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00606-015-1233-y

Keywords

Navigation