Skip to main content

Advertisement

Log in

Validation of components of the water cycle in the ECHAM4 general circulation model based on the Newtonian relaxation technique: a case study of an intense winter cyclone

  • Review Article
  • Published:
Meteorology and Atmospheric Physics Aims and scope Submit manuscript

Abstract

The representation of a simulated synoptic-scale weather system is compared with observations. To force the model to the observed state, the so-called Newtonian relaxation technique (nudging) is applied to relax vorticity, divergence, temperature, and the logarithm of surface pressure to the European Centre for Medium-Range Weather Forecasts (ECMWF) reanalysis fields. The development of an extraordinary strong cyclone along the East Coast of the USA during 12–14 March 1993 was chosen as the case study. The synoptic-scale features were well represented in the model simulation. However, systematic differences to observations of the International Satellite Cloud Climatology Project (ISCCP) occurred. The model underestimated clouds in lower and middle levels of the troposphere. Low-level clouds were mainly underestimated behind the cold front of the developing cyclone, while the underestimation of mid-level clouds seems to be a more general feature. The reason for the latter is the fact that the relative humidity has to exceed a critical threshold before clouds can develop. In contrast, thin upper-level cirrus clouds in pre-frontal regions were systematically overestimated by the model. Therefore, we investigated the effects of changed physical parameterizations with two sensitivity studies. In the PCI experiment, the standard cloud scheme operated in ECHAM4 was replaced by a more sophisticated one which defines separate prognostic equations for cloud liquid water and cloud ice. The second experiment, RHCRIT, changed the profile of the critical relative humidity threshold for the development of clouds in the standard scheme. Both experiments showed positive changes in the representation of clouds during the development of the cyclone as compared to the ISCCP. PCI clearly reduced the upper-level cloud amounts by intensifying the precipitation flux in the middle troposphere. The changed condensation threshold in the RHCRIT experiment led to a sharper represented cold front and a better represented cloudiness on its rear side as compared to the PCI and the CONTROL simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  • Barahona D, Nenes E (2008) Parameterizing the competition between homogeneous and heterogeneous freezing in cirrus cloud formation—monodisperse ice nuclei. Atmos Chem Phys Discuss 8:15665–15698

    Google Scholar 

  • Bauer H-S, Wulfmeyer V, Bengtsson L (2008) The representation of a synoptic-scale weather system in a thermodynamically adjusted version of the ECHAM4 general circulation model. Meteorol Atmos Phys 99:129–153

    Article  Google Scholar 

  • Bengtsson L, Hodges KI (2005) On the impact of humidity observations in numerical weather prediction. Tellus A 57:701–708

    Article  Google Scholar 

  • Boyle JS, Williamson D, Cederwall R, Fiorino M, Hnilo J, Olson J, Phillips T, Potter G, Xie S (2005) Diagnosis of Community Atmospheric Model 2 (CAM2) in numerical weather forecast configuration at atmospheric radiation measurement sites. J Geophys Res 110:D15S15. doi:10.1029/2004JD005042

    Article  Google Scholar 

  • Brest CL, Rossow WB (1992) Radiometric calibration and monitoring of NOAA AVHRR data for ISCCP. Int J Remote Sens 13:235–273

    Article  Google Scholar 

  • Cess RD, Zhang MH, Ingram WJ, Potter GL, Alekseev V, Barker HW, Cohen-Solal E, Coleman RA, Dazlich DA, Del Genio AD, Dix MR, Dymnikov V, Esch M, Fowler LD, Fraser JR, Galin V, Gates WL, Hack JJ, Kiehl JT, Treut HL, Lo KK-W, McAvaney BJ, Meleshko VP, Morcrette J-J, Randall DA, Roeckner E, Royer J-F, Schlesinger ME, Sporyshev PV, Timbal B, Volodin EM, Taylor KE, Wang W, Wetherald RT (1996) Cloud feedback in atmospheric general circulation models: an update. J Geophys Res 101:12791–12794

    Article  Google Scholar 

  • Collins WD, Bitz CM, Blackmon ML, Bonan GB, Bretherton CS, Carton JA, Chang P, Doney SC, Hack JJ, Henderson TB, Kiehl JT, Large WG, McKenna DS, Santer BD, Smith RD (2006) The Community Climate System Model version 3 (CCSM3). J Clim 19:2122–2143

    Article  Google Scholar 

  • Danielsen EF (1982) A dehydration mechanism for the stratosphere. Geophys Res Lett 9:605–608

    Article  Google Scholar 

  • Duffy PB, Govindasamy B, Iorio JP, Milovich J, Sperber KR, Taylor KE, Wehner MF, Thompson SL (2003) High-resolution simulations of global climate, part 1: present climate. Clim Dyn 21:371–390

    Article  Google Scholar 

  • Fouquart Y, Bonnel B (1980) Computations of solar heating of the Earth’s atmosphere: a new parameterization. Beitr Phys Atmos 53:35–62

    Google Scholar 

  • Gates WL, Boyle JS, Covey CC, Dease CG, Doutriaux CM, Drach RS, Fiorino M, Glecker PJ, Hnilo JJ, Marlais SM, Phillips TJ, Potter GL, Santer BD, Sperber KR, Taylor KE, Williams DN (1999) An overview of the results of the Atmospheric Model Intercomparison Project (AMIP I). Bull Am Meteorol Soc 80:29–55

    Article  Google Scholar 

  • Geleyn J-F (1980) Some diagnostics of the cloud–radiation interaction in the ECMWF forecasting model. In: Proceedings of the ECMWF Workshop on Radiation and Cloud–Radiation Interaction in Numerical Modelling, October 1980. European Centre for Medium-Range Weather Forecasting (ECMWF), Reading, UK

  • Giorgetta M, Wild M (1995) The water vapour continuum and its representation in ECHAM4. MPI Report 162, Max Planck Institute for Meteorology, Hamburg, Germany

  • Govindasamy B, Duffy PB, Coquard J (2003) High-resolution simulations of global climate, part 2: effects of increased greenhouse gases. Clim Dyn 21:391–404

    Article  Google Scholar 

  • Grell GA, Dudhia J, Stauffer DR (1995) A description of the fifth-generation Penn State/NCAR mesoscale model (MM5). NCAR Technical Note TN-398+STR, NCAR, Boulder, CO, USA

  • Hack JJ, Caron JM, Yeager SG, Oleson KW, Holland MM, Truesdale JE, Rasch PJ (2006) Simulation of the Global Hydrological Cycle in the CCSM Community Atmosphere Model version 3 (CAM3): mean features. J Clim 19:2199–2221

    Article  Google Scholar 

  • Hagemann S, Arpe K, Roeckner E (2006) Evaluation of the hydrological cycle in the ECHAM5 model. J Clim 19:3810–3827

    Article  Google Scholar 

  • Held IM, Soden BJ (2006) Robust responses of the hydrological cycle to global warming. J Clim 19:5686–5699

    Article  Google Scholar 

  • Heymsfield AJ (1977) Precipitation development in stratiform ice clouds: a microphysical and dynamical study. J Atmos Sci 34:367–381

    Article  Google Scholar 

  • Hoke JE, Anthes RA (1976) The initialization of numerical models by a dynamic-initialization technique. Mon Weather Rev 104:1551–1556

    Article  Google Scholar 

  • Houze RA Jr (1993) Cloud dynamics. International Geophysics Series, vol 53. Academic Press, San Diego, 573 pp

  • Intergovernmental Panel on Climate Change (IPCC) (2007) Climate change 2007: the physical science basis. Technical Report Final Report Working Group 1, Intergovernmental Panel on Climate Change Assessment Report 4, WMO, Geneva, Switzerland. Available online at: http://ipcc-wg1.ucar.edu/wg1/wg1-report.html

  • Jacob D, Podzun R (1997) Sensitivity studies with the regional climate model REMO. Meteorol Atmos Phys 63:119–129

    Article  Google Scholar 

  • Jacob D, Van den Hurk BJJM, Andrae U, Elgered G, Fortelius C, Graham LP, Jackson SD, Karstens U, Köpken Chr, Lindau R, Podzun R, Rockel B, Rubel F, Sass BH, Smith RNB, Yang X (2001) A comprehensive model inter-comparison study investigating the water budget during the BALTEX-PIDCAP period. Meteorol Atmos Phys 77:19–43

    Article  Google Scholar 

  • Jakob C (1999) Cloud cover in the ECMWF reanalysis. J Clim 12:947–959

    Article  Google Scholar 

  • Jakob C (2003) An improved strategy for the evaluation of cloud parameterizations in GCMs. Bull Am Meteorol Soc 84:1387–1401

    Article  Google Scholar 

  • Jeuken ABM, Siegmund PC, Heijboer LC, Feichter J, Bengtsson L (1996) On the potential of assimilating meteorological analysis in a global climate model for the purpose of model validation. J Geophys Res 101:16939–16950

    Article  Google Scholar 

  • Joly A, Jorgensen D, Shapiro MA, Thorpe A, Bessemoulin P, Browning KA, Cammas J-P, Chalon J-P, Clough SA, Emanuel KA, Eymard L, Gall R, Hildebrand PH, Langland RH, Lemaître Y, Lynch P, Moore JA, Ola P, Persson G, Snyder C, Wakimoto RM (1997) The Fronts and Atlantic Storm-Track EXperiment (FASTEX): scientific objectives and experimental design. Bull Am Meteorol Soc 78:1917–1940

    Article  Google Scholar 

  • Kärcher B, Burkhardt U (2008) A cirrus cloud scheme for general circulation models. Q J Roy Meteorol Soc 134:1439–1461. doi:10.1002/qj.301

    Article  Google Scholar 

  • Kärcher B, Lohmann U (2002a) A parameterization of cirrus cloud formation: homogeneous freezing including effects of aerosol size. J Geophys Res 107:D23, 4698. doi:10.1029/2001JD001429

  • Kärcher B, Lohmann U (2002b) A parameterization of cirrus cloud formation: homogeneous freezing of supercooled aerosols. J Geophys Res 107:D2, 4010. doi:10.1029/2001JD000470

  • Kärcher B, Lohmann U (2003) A parameterization of cirrus cloud formation: heterogeneous freezing. J Geophys Res 108:D14, 4402. doi:10.1029/2002JD003220

  • Kidwell KB (1995) NOAA Polar orbiter data users guide (TIROS-N, NOAA-6, NOAA-7, NOAA-8, NOAA-9, NOAA-10, NOAA-11, NOAA-13 and NOAA-14). Technical Report 304, National Oceanic and Atmospheric Administration, National Environmental Satellite, Data and Information Service, Washington, DC

  • Klepp C-P, Bakan S, Grassl H (2003) Improvements of satellite-derived cyclonic rainfall over the North Atlantic. J Clim 16(4):657–669

    Article  Google Scholar 

  • Krishnamurti TN, Xue J, Bedi HS, Ingles K, Oosterhof D (1991) Physical initialization for numerical weather prediction over the tropics. Tellus A 43:53–81

    Article  Google Scholar 

  • Krishnamurti TN, Bedi HS, Ingles K (1993) Physical initialization using SSM/I rain rates. Tellus A 45:247–269

    Article  Google Scholar 

  • Land C, Ponater M, Sausen R, Roeckner E (1999) The ECHAM4/L39 (DLR) atmosphere GCM: technical description and model climatology. Technical Report Forschungsbericht 31, DLR, 45 pp

  • Liao X, Rossow WB, Rind D (1995) Comparison between SAGE II and ISCCP high-level clouds. 2. Locating cloud tops. J Geophys Res 100:1137–1147

    Article  Google Scholar 

  • Liljequist GH, Cehak K (1994) Allgemeine Meteorologie, 3rd edn. Vieweg, Braunschweig, 412 pp

  • Liu X, Penner JE, Ghan SJ, Wang M (2007) Inclusion of ice microphysics in the NCAR Community Atmospheric Model version 3 (CAM3). J Clim 20:4526–4547

    Article  Google Scholar 

  • Lohmann U, Kärcher B (2002) First interactive simulations of cirrus clouds formed by homogeneous freezing in the ECHAM general circulation model. J Geophys Res 107:D10, 4105. doi:10.1029/2001JD000767

  • Lohmann U, Roeckner E (1996) Design and performance of a new cloud microphysics scheme developed for the ECHAM general circulation model. Clim Dyn 12:557–572

    Article  Google Scholar 

  • Lohmann U, Feichter J, Chuang CC, Penner JE (1999a) Predicting the number of cloud droplets in the ECHAM GCM. J Geophys Res 104:9169–9198

    Article  Google Scholar 

  • Lohmann U, McFarlane N, Levkov L, Abdella K, Albers F (1999b) Comparing different cloud schemes of a single column model by using mesoscale forcing and nudging technique. J Clim 12:438–461

    Article  Google Scholar 

  • Matveev LT (1984) Cloud dynamics. Atmospheric science library. Reidel, Dordrecht, 340 pp

  • McFarlane NA, Boer GJ, Blanchet J-P, Lazare M (1992) The Canadian Climate Centre second-generation general circulation model and its equilibrium climate. J Clim 5:1013–1044

    Article  Google Scholar 

  • Meinke I (2006) A comparison of simulated clouds to ISCCP data. Mon Weather Rev 134:1669–1681

    Article  Google Scholar 

  • Miller MJ, Palmer TN, Swinbank R (1989) Parameterization and influence of sub-grid scale orography in general circulation and numerical weather prediction models. Meteorol Atmos Phys 40:84–109

    Article  Google Scholar 

  • Moncrieff MW (1995) Mesoscale convection from a large-scale perspective. Atmos Res 35:87–112

    Article  Google Scholar 

  • Morcrette J-J (1991) Radiation and cloud radiative properties in the European Centre for Medium Range Weather Forecasts forecasting system. J Geophys Res 96:9121–9132

    Article  Google Scholar 

  • Morcrette J-J, Jakob C (2000) The response of the ECMWF model to changes in the cloud overlap assumption. Mon Weather Rev 128:1707–1732

    Article  Google Scholar 

  • Morrison H, Thompson G, Tatarskii V (2008) Impact of cloud microphysics on the development of trailing stratiform precipitation in a simulated squall line: comparison of one- and two-moment schemes. Mon Weather Rev (in press)

  • Nordeng TE (1994) Extended versions of the convective parameterization scheme at ECMWF and their impact on the mean and transient activity of the model in the tropics. Technical Memorandum 206, European Centre for Medium-Range Weather Forecasting, Reading, UK

  • Palmer TN, Shutts GJ, Swinbank R (1986) Alleviation of a systematic westerly bias in general circulation and numerical weather prediction models through an orographic gravity wave drag parameterization. Q J Roy Meteorol Soc 112:1001–1031

    Article  Google Scholar 

  • Phillips TJ, Potter GL, Williamson DL, Boyle RTCJS, Fiorino M, Hnilo JJ, Olson JG, Xie S, Yio JJ (2004) Evaluating parameterizations in general circulation models: climate simulation meets weather prediction. Bull Am Meteorol Soc 85(12):1903–1915

    Article  Google Scholar 

  • Pope VD, Pamment JA, Jackson DR, Slingo A (2001) The representation of water vapor and its dependence on vertical resolution in the Hadley Centre climate model. J Clim 14:3065–3085

    Article  Google Scholar 

  • Räisänen J, Hansson U, Ullerstig A, Döscher R, Graham LP, Jones C, Meier HEM, Samuelsson P, Willén U (2004) European climate in the late twenty-first century: regional simulations with two driving global models and two forcing scenarios. Clim Dyn 22:13–31

    Article  Google Scholar 

  • Randall D, Krueger S, Bretherton C, Curry J, Duynkerke P, Moncrieff M, Ryan B, Starr D, Miller M, Rossow W, Tselioudis G, Wielicki B (2003) Confronting models with data: the GEWEX Cloud Systems Study. Bull Am Meteorol Soc 84(4):455–469

    Article  Google Scholar 

  • Reisner J, Rasmussen RM, Bruintjes RT (1998) Explicit forecasting of supercooled liquid water in winter storms using the MM5 mesoscale model. Q J Roy Meteorol Soc 124:1071–1107

    Article  Google Scholar 

  • Rockel B, Raschke E, Weyres W (1991) A parameterization of broad band radiative transfer properties of water, ice, and mixed clouds. Beitr Phys Atmos 64:1–12

    Google Scholar 

  • Roeckner E, Le Treut H (1996) GCM studies and parameterization. In: Crutzen PJ, Ramanathan V (eds) NATO ASI Series I. Springer, Berlin, vol 35, pp 109–133

  • Roeckner E, Rieland M, Keup E (1991) Modeling of cloud and radiation in the ECHAM model. In: Proceedings of the ECMWF/WCRP Workshop on Clouds, Radiative Transfer and the Hydrological Cycle, 12–15 November 1990. European Centre for Medium-Range Weather Forecasting, Reading, UK, pp 199–222

  • Roeckner E, Arpe K, Bengtsson L, Christoph M, Claussen M, Dümenil L, Giorgetta M, Schlese U, Schulzweida U (1996) The atmospheric general circulation model ECHAM4: model description and simulation of present-day climate. MPI Technical Report 218, Max Planck Institute for Meteorology, Hamburg, Germany

  • Roeckner E, Brokopf R, Esch M, Giorgetta M, Hagemann S, Kornblueh L, Manzini E, Schlese U, Schulzweida U (2006) Sensitivity of simulated climate to horizontal and vertical resolution in the ECHAM5 atmosphere model. J Clim 19:3771–3791

    Article  Google Scholar 

  • Rossow WB, Garder LC (1993) Validation of ISCCP cloud detections. J Clim 6:2370–2393

    Article  Google Scholar 

  • Rossow WB, Schiffer RA (1991) ISCCP cloud data products. Bull Am Meteorol Soc 72:2–20. Postscript version at: http://isccp.giss.nasa.gov/docs/documents.html

    Google Scholar 

  • Rossow WB, Schiffer RA (1999) Advances in understanding clouds from ISCCP. Bull Am Meteorol Soc 80(11):2261–2287

    Article  Google Scholar 

  • Rossow WB, Walker A, Roiter M (1996) International Satellite Cloud Climatology Project (ISCCP): description of reduced resolution radiance data. WMO/TD-No. 58, World Meteorological Organization, Geneva, Switzerland, 163 pp. Postscript version at: http://isccp.giss.nasa.gov/docs/documents.html

  • Rotstayn LD, Ryan BF, Katzfey JJ (2000) A scheme for calculation of the liquid fraction in mixed-phase stratiform clouds in large-scale models. Mon Weather Rev 128:1070–1088

    Article  Google Scholar 

  • Ryan BF, Katzfey JJ, Abbs DJ, Jakob C, Lohmann U, Rockel B, Rotstayan LD, Stewart RE, Szeto KK, Tselioudis G, Yau MK (2000) Simulations of a cold front by cloud-resolving, limited-area, and large-scale models, and a model evaluation using in situ and satellite observations. Mon Weather Rev 128:3218–3235

    Article  Google Scholar 

  • Schär C, Vidale PL, Lüthi D, Frei C, Häberli C, Liniger MA, Appenzeller C (2004) The role of increasing temperature variability in European summer heatwaves. Nature 427:332–336

    Article  Google Scholar 

  • Seifert A, Beheng KD (2006) A two-moment cloud microphysics parameterization for mixed-phase clouds. Part 1: model description. Meteorol Atmos Phys 92:45–66

    Article  Google Scholar 

  • Stauffer DR, Seaman NL (1990) Use of four-dimensional data assimilation in a limited-area mesoscale model. Part I: experiments with synoptic-scale data. Mon Weather Rev 118:1250–1277

    Article  Google Scholar 

  • Stauffer DR, Seaman NL (1994) Multiscale four-dimensional data assimilation. J Appl Meteorol 33:416–434

    Article  Google Scholar 

  • Stier P, Feichter J, Kinne S, Kloster S, Vignati E, Wilson J, Ganzeveld L, Tegen I, Werner M, Balkanski Y, Schultz M, Boucher O, Minikin A, Petzold A (2005) The aerosol-climate model ECHAM5-HAM. Atmos Chem Phys 5:1125–1156

    Article  Google Scholar 

  • Stubenrauch CJ, Rossow WB, Chéruy F, Chérdin A, Scott NA (1999) Clouds as seen by satellite sounders (3I) and imagers (ISCCP). Part I: evaluation of cloud parameters. J Clim 12:2189–2213

    Article  Google Scholar 

  • Sundqvist H (1978) A parameterization scheme for non-convective condensation including prediction of cloud water content. Q J Roy Meteorol Soc 104:677–690

    Article  Google Scholar 

  • Sundqvist H, Berge E, Kristjánsson JE (1989) Condensation and cloud parameterization studies with a mesoscale numerical weather prediction model. Mon Weather Rev 117:1641–1657

    Article  Google Scholar 

  • Thompson G, Rasmussen RM, Manning K (2004) Explicit forecasts of winter precipitation using an improved bulk microphysics scheme. Part I: description and sensitivity analysis. Mon Weather Rev 132:519–542

    Article  Google Scholar 

  • Tian L, Curry JA (1989) Cloud overlap statistics. J Geophys Res 94:9925–9935

    Article  Google Scholar 

  • Tiedtke M (1989) A comprehensive mass flux scheme for cumulus parameterization in large-scale models. Mon Weather Rev 117:1779–1800

    Article  Google Scholar 

  • Tiedtke M (1993) Representation of clouds in large-scale models. Mon Weather Rev 121:3040–3061

    Article  Google Scholar 

  • Tompkins AM (2002) A prognostic parameterization for the subgrid-scale variability of water vapor and clouds in large-scale models and its use to diagnose cloud cover. J Atmos Sci 59:1917–1942

    Article  Google Scholar 

  • Tompkins A, Gierens AM, Rädel G (2007) Ice supersaturation in the ECMWF integrated forecast system. Q J Roy Meteorol Soc 133:53–63

    Article  Google Scholar 

  • Tselioudis G, DelGenio AD, Kovari W Jr, Yao M-S (1997) Temperature dependence of low cloud optical thickness in the GISS GCM: contributing mechanisms and climate implications. J Clim 11:3268–3281

    Article  Google Scholar 

  • Walcek CJ (1994) Cloud cover and its relationship to relative humidity during a springtime midlatitude cyclone. Mon Weather Rev 122:1021–1035

    Article  Google Scholar 

  • Wang J, Rossow WB, Zhang Y (2000) Cloud vertical structure and its variations from a 20-yr global rawinsonde dataset. J Clim 13:3041–3056

    Article  Google Scholar 

  • Weckwerth TM, Parsons DB, Koch SE, Moore JA, Demoz B, LeMone P, Belay B, Flamant C, Geerts B, Wang J, Feltz WF (2004) An overview of the International H2O Project (IHOP_2002) and some preliminary highlights. Bull Am Meteorol Soc 85:253–277

    Article  Google Scholar 

  • Wild M, Roeckner E (2006) Radiative fluxes in ECHAM5. J Clim 19:3792–3809

    Article  Google Scholar 

  • Williamson DL, Rasch PJ (1994) Water vapor transport in the NCAR CCM2. Tellus A 46:34–51

    Article  Google Scholar 

  • Wulfmeyer V, Behrendt A, Bauer H-S, Kottmeier C, Corsmeier U, Blyth A, Craig G, Schumann U, Hagen M, Crewell S, Di Girolamo P, Flamant C, Miller M, Montani A, Mobbs S, Richard E, Rotach MW, Arpagaus M, Russchenberg H, Schlüssel P, König M, Gärtner V, Steinacker R, Dorninger M, Turner DD, Weckwerth TM, Hense A, Simmer C (2008) The convective and orographically induced precipitation study. A research and development project of the World Weather Research Program for improving quantitative precipitation forecasting in low-mountain regions. Bull Am Meteoerol Soc 89:1477–1486

    Article  Google Scholar 

  • Xu K-M, Krueger SK (1991) Evaluation of cloudiness parameterizations using a cumulus ensemble model. Mon Weather Rev 119:342–367

    Article  Google Scholar 

  • Zdunkowski WG, Panhans W-G, Welch RM, Korb GJ (1982) A radiation scheme for circulation and climate models. Contrib Atmos Phys 55:215–238

    Google Scholar 

  • Zhang Y, Rockel B, Stuhlmann R, Hollmann R, Karstens U (2001) REMO cloud modeling: improvements and validation with ISCCP DX data. J Appl Meteorol 40:389–408

    Article  Google Scholar 

  • Zhang J, Lohmann U, Stier P (2005) A microphysical parameterization for convective clouds in the ECHAM5 climate model. 1. Single-column model results evaluated at the Oklahoma Atmospheric Radiation Measurement Program site. J Geophys Res 110:D15

    Google Scholar 

Download references

Acknowledgments

We are grateful to Johann Feichter, Martin Stendel, and Ingo Kirchner for their help in the preparation and debugging of the model for the simulations and for making available the necessary forcing files. Sincere thanks go to Lennart Bengtsson, who planted the idea to use the nudging for the validation of ECHAM4 into my mind. Many thanks go to Erich Roeckner. His profound knowledge of the ECHAM4 model and his calm and thoughtful way of discussing scientific topics were always a great help. We are indebted to the NASA Langlay Research Center EOSDIS Distributed Active Archive Center, who provided the ISCCP DX observations. The CPC US–Mexico daily gridded precipitation data set was provided by the IRI/LDEO climate data library. Finally, Uwe Schulzweida and Luis Kornblueh are thanked for their tireless computational assistance. We are thankful to the two unknown reviewers, whose comments contributed significantly to the improvement of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hans-Stefan Bauer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bauer, HS., Wulfmeyer, V. Validation of components of the water cycle in the ECHAM4 general circulation model based on the Newtonian relaxation technique: a case study of an intense winter cyclone. Meteorol Atmos Phys 104, 135–162 (2009). https://doi.org/10.1007/s00703-009-0018-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00703-009-0018-7

Keywords

Navigation