Skip to main content

Advertisement

Log in

Effect of amino acid sequence variations at position 149 on the fusogenic activity of the subtype B avian metapneumovirus fusion protein

  • Original Article
  • Published:
Archives of Virology Aims and scope Submit manuscript

Abstract

The entry of enveloped viruses into host cells requires the fusion of viral and cell membranes. These membrane fusion reactions are mediated by virus-encoded glycoproteins. In the case of avian metapneumovirus (aMPV), the fusion (F) protein alone can mediate virus entry and induce syncytium formation in vitro. To investigate the fusogenic activity of the aMPV F protein, we compared the fusogenic activities of three subtypes of aMPV F proteins using a TCSD50 assay developed in this study. Interestingly, we found that the F protein of aMPV subtype B (aMPV/B) strain VCO3/60616 (aMPV/vB) was hyperfusogenic when compared with F proteins of aMPV/B strain aMPV/f (aMPV/fB), aMPV subtype A (aMPV/A), and aMPV subtype C (aMPV/C). We then further demonstrated that the amino acid (aa) residue 149F contributed to the hyperfusogenic activity of the aMPV/vB F protein. Moreover, we revealed that residue 149F had no effect on the fusogenic activities of aMPV/A, aMPV/C, and human metapneumovirus (hMPV) F proteins. Collectively, we provide the first evidence that the amino acid at position 149 affects the fusogenic activity of the aMPV/B F protein, and our findings will provide new insights into the fusogenic mechanism of this protein.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Earp L, Delos S, Park H, White J (2005) The many mechanisms of viral membrane fusion proteins. Membrane trafficking in viral replication. Springer, Berlin, pp 25–66

    Book  Google Scholar 

  2. Moore J, Jameson BA, Weiss RA, Sattentau Q (1993) The HIV-cell fusion reaction. Viral fusion mechanisms. CRC Press, Boca Raton, pp 233–289

    Google Scholar 

  3. Nussbaum O, Broder CC, Berger EA (1994) Fusogenic mechanisms of enveloped-virus glycoproteins analyzed by a novel recombinant vaccinia virus-based assay quantitating cell fusion-dependent reporter gene activation. J Virol 68:5411–5422

    PubMed Central  CAS  PubMed  Google Scholar 

  4. Zaitsev V, von Itzstein M, Groves D, Kiefel M, Takimoto T, Portner A, Taylor G (2004) Second sialic acid binding site in Newcastle disease virus hemagglutinin-neuraminidase: implications for fusion. J Virol 78:3733–3741

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Chen L, Gorman JJ, McKimm-Breschkin J, Lawrence LJ, Tulloch PA, Smith BJ, Colman PM, Lawrence MC (2001) The structure of the fusion glycoprotein of Newcastle disease virus suggests a novel paradigm for the molecular mechanism of membrane fusion. Structure 9:255–266

    Article  CAS  PubMed  Google Scholar 

  6. Plemper RK, Lakdawala AS, Gernert KM, Snyder JP, Compans RW (2003) Structural features of paramyxovirus F protein required for fusion initiation. Biochemistry 42:6645–6655

    Article  CAS  PubMed  Google Scholar 

  7. Bagai S, Lamb RA (1995) Quantitative measurement of paramyxovirus fusion: differences in requirements of glycoproteins between simian virus 5 and human parainfluenza virus 3 or Newcastle disease virus. J Virol 69:6712–6719

    PubMed Central  CAS  PubMed  Google Scholar 

  8. Porotto M, Murrell M, Greengard O, Moscona A (2003) Triggering of human parainfluenza virus 3 fusion protein (F) by the hemagglutinin-neuraminidase (HN) protein: an HN mutation diminishes the rate of F activation and fusion. J Virol 77:3647–3654

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Aguilar HC, Ataman ZA, Aspericueta V, Fang AQ, Stroud M, Negrete OA, Kammerer RA, Lee B (2009) A novel receptor-induced activation site in the Nipah virus attachment glycoprotein (G) involved in triggering the fusion glycoprotein (F). J Biol Chem 284:1628–1635

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Talekar A, DeVito I, Salah Z, Palmer SG, Chattopadhyay A, Rose JK, Xu R, Wilson IA, Moscona A, Porotto M (2013) Identification of a region in the stalk domain of the Nipah virus receptor binding protein that is critical for fusion activation. J Virol 87:10980–10996

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Pastey MK, Crowe JE, Graham BS (1999) RhoA interacts with the fusion glycoprotein of respiratory syncytial virus and facilitates virus-induced syncytium formation. J Virol 73:7262–7270

    PubMed Central  CAS  PubMed  Google Scholar 

  12. Herfst S, Mas V, Ver LS, Wierda RJ, Osterhaus AD, Fouchier RA, Melero JA (2008) Low-pH-induced membrane fusion mediated by human metapneumovirus F protein is a rare, strain-dependent phenomenon. J Virol 82:8891–8895

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Schowalter RM, Chang A, Robach JG, Buchholz UJ, Dutch RE (2009) Low-pH triggering of human metapneumovirus fusion: essential residues and importance in entry. J Virol 83:1511–1522

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Schickli JH, Kaur J, Ulbrandt N, Spaete RR, Tang RS (2005) An S101P substitution in the putative cleavage motif of the human metapneumovirus fusion protein is a major determinant for trypsin-independent growth in Vero cells and does not alter tissue tropism in hamsters. J Virol 79:10678–10689

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Ito M, Nishio M, Kawano M, Kusagawa S, Komada H, Ito Y, Tsurudome M (1997) Role of a single amino acid at the amino terminus of the simian virus 5 F2 subunit in syncytium formation. J Virol 71:9855–9858

    PubMed Central  CAS  PubMed  Google Scholar 

  16. Dutch RE, Joshi SB, Lamb RA (1998) Membrane fusion promoted by increasing surface densities of the paramyxovirus F and HN proteins: comparison of fusion reactions mediated by simian virus 5 F, human parainfluenza virus type 3 F, and influenza virus HA. J Virol 72:7745–7753

    PubMed Central  CAS  PubMed  Google Scholar 

  17. Biacchesi S, Skiadopoulos MH, Yang L, Lamirande EW, Tran KC, Murphy BR, Collins PL, Buchholz UJ (2004) Recombinant human metapneumovirus lacking the small hydrophobic SH and/or attachment G glycoprotein: deletion of G yields a promising vaccine candidate. J Virol 78:12877–12887

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Cook J (2000) Avian pneumovirus infections of turkeys and chickens. Vet J 160:118–125

    Article  CAS  PubMed  Google Scholar 

  19. Cook JKA, Ellis MM, Huggins MB (1991) The pathogenesis of turkey rhinotracheitis virus in turkey poults inoculated with the virus alone or together with two strains of bacteria. Avian Pathol 20:155–166

    Article  CAS  PubMed  Google Scholar 

  20. Senne D, Edson R, Pedersen J, Panigrahy B (1997) Avian pneumovirus update. In: Proceedings of 134th annual convention of the American Veterinary Medical Association, Reno, p 190

  21. Buys S, Du Preez J (1980) A preliminary report on the isolation of a virus causing sinusitis in turkeys in South Africa and attempts to attenuate the virus. Turkeys 28:36

    Google Scholar 

  22. Bäyon-Auboyer MH, Arnauld C, Toquin D, Eterradossi N (2000) Nucleotide sequences of the F, L and G protein genes of two non-A/non-B avian pneumoviruses (APV) reveal a novel APV subgroup. J Gen Virol 81:2723–2733

    Article  PubMed  Google Scholar 

  23. Seal BS (1998) Matrix protein gene nucleotide and predicted amino acid sequence demonstrate that the first US avian pneumovirus isolate is distinct from European strains. Virus Res 58:45–52

    Article  CAS  PubMed  Google Scholar 

  24. Wei L, Zhu S, Yan X, Wang J, Zhang C, Liu S, She R, Hu F, Quan R, Liu J (2013) Avian metapneumovirus subgroup C infection in chickens, China. Emerg Infect Dis 19:1092

    Article  PubMed Central  PubMed  Google Scholar 

  25. Mase M, Yamaguchi S, Tsukamoto K, Imada T, Imai K, Nakamura K (2003) Presence of avian pneumovirus subtypes A and B in Japan. Avian Dis 47:481–484

    Article  PubMed  Google Scholar 

  26. Kwon JS, Lee HJ, Jeong SH, Park JY, Hong YH, Lee YJ, Youn HS, Lee DW, Do SH, Park SY (2010) Isolation and characterization of avian metapneumovirus from chickens in Korea. J Vet Sci 11:59

    Article  PubMed Central  PubMed  Google Scholar 

  27. Banet-Noach C, Simanov L, Perk S (2005) Characterization of Israeli avian metapneumovirus strains in turkeys and chickens. Avian Pathol 34:220–226

    Article  PubMed  Google Scholar 

  28. D’Arce RC, Coswig LT, Almeida RS, Trevisol IM, Monteiro MC, Rossini LI, Di Fabio J, Hafez HM, Arns CW (2005) Subtyping of new Brazilian avian metapneumovirus isolates from chickens and turkeys by reverse transcriptase-nested-polymerase chain reaction. Avian Pathol 34:133–136

    Article  PubMed  Google Scholar 

  29. Maharaj S, Thomson D, Graca JV (1994) Isolation of an avian pneumovirus like agent from broiler breeder chickens in South Africa. Vet Rec 134:525–526

    Article  CAS  PubMed  Google Scholar 

  30. Bäyon-Auboyer M, Jestin V, Toquin D, Cherbonnel M, Eterradossi N (1999) Comparison of F-, G-and N-based RT-PCR protocols with conventional virological procedures for the detection and typing of turkey rhinotracheitis virus. Arch Virol 144:1091–1109

    Article  PubMed  Google Scholar 

  31. Dar AM, Tune K, Munir S, Panigrahy B, Goyal SM, Kapur V (2001) PCR-based detection of an emerging avian pneumovirus in US turkey flocks. J Vet Diagn Invest 13:201–205

    Article  CAS  PubMed  Google Scholar 

  32. Coswig LT, Santos MBd, Hafez HM, Ferreira HL, Arns CW (2010) Propagation of avian metapneumovirus subtypes A and B using chicken embryo related and other cell systems. J Virol Methods 167:1–4

    Article  CAS  PubMed  Google Scholar 

  33. de Graaf M, Schrauwen EJA, Herfst S, van Amerongen G, Osterhaus ADME, Fouchier RAM (2009) Fusion protein is the main determinant of metapneumovirus host tropism. J Gen Virol 90:1408–1416

    Article  PubMed  Google Scholar 

  34. Wei Y, Feng K, Yao X, Cai H, Li J, Mirza AM, Iorio RM, Li J (2012) Localization of a region in the fusion protein of avian metapneumovirus that modulates cell–cell fusion. J Virol 86:11800–11814

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Avitabile E, Lombardi G, Gianni T, Capri M, Campadelli-Fiume G (2004) Coexpression of UL20p and gK inhibits cell–cell fusion mediated by herpes simplex virus glycoproteins gD, gH-gL, and wild-type gB or an endocytosis-defective gB mutant and downmodulates their cell surface expression. J Virol 78:8015–8025

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Kinzler ER, Compton T (2005) Characterization of human cytomegalovirus glycoprotein-induced cell–cell fusion. J Virol 79:7827–7837

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. Horvath C, Paterson R, Shaughnessy M, Wood R, Lamb R (1992) Biological activity of paramyxovirus fusion proteins: factors influencing formation of syncytia. J Virol 66:4564–4569

    PubMed Central  CAS  PubMed  Google Scholar 

  38. Heminway BR, Yang Y, Galinski MS (1994) Paramyxovirus mediated cell fusion requires co-expression of both the fusion and hemagglutinin-neuraminidase glycoproteins. Virus Res 31:1–16

    Article  CAS  PubMed  Google Scholar 

  39. Schowalter RM, Smith SE, Dutch RE (2006) Characterization of human metapneumovirus F protein-promoted membrane fusion: critical roles for proteolytic processing and low pH. J Virol 80:10931–10941

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  40. Reed LJ, Muench H (1938) A simple method of estimating fifty per cent endpoints. Am J Epidemiol 27:493–497

    Google Scholar 

  41. Sugiyama M, Ito H, Hata Y, Ono E, Ito T (2010) Complete nucleotide sequences of avian metapneumovirus subtype B genome. Virus genes 41:389–395

    Article  CAS  PubMed  Google Scholar 

  42. Liman M, Rautenschlein S (2007) Induction of local and systemic immune reactions following infection of turkeys with avian Metapneumovirus (aMPV) subtypes A and B. Vet Immunol Immunopathol 115:273–285

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Fund for the Modern Agro-Industry Technology Research System (no. nycytx-42-G3-01). We are grateful to Dr. Pinghuang Liu for critical revision of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yulong Gao or Xiaomei Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yun, B., Gao, Y., Liu, Y. et al. Effect of amino acid sequence variations at position 149 on the fusogenic activity of the subtype B avian metapneumovirus fusion protein. Arch Virol 160, 2445–2453 (2015). https://doi.org/10.1007/s00705-015-2524-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00705-015-2524-x

Keywords

Navigation