Skip to main content
Log in

Asymmetric synthesis and study of biological activity of (epi-)benzoanalogues of bioactive phenanthroquinolizidine alkaloids

  • Original Paper
  • Published:
Monatshefte für Chemie - Chemical Monthly Aims and scope Submit manuscript

Abstract

The increasing microbial resistance to primary active structures remains alarming and the effort to look for new antibacterial active structures is still of scientific interest. One of the attractive ways to find new active structures is derivatization of well-known natural compounds. Alkaloids are a structurally diverse group of natural products with a wide range of biological effects. Historically, an attempt to increase the antimicrobial activity of alkaloids through chemical modifications has been successful. In this work, 12 new quinolizidine derivatives were synthesized and tested for their antimicrobial activity. The asymmetric synthesis of the benzoanalogue of the phenanthroquinolizidine bioactive alkaloid (−)-cryptopleurine and the epi-benzoanalogues of (−)-(15R)-hydroxycryptopleurine were achieved in six or seven steps starting from available enantiopure (S)-2-aminoadipic acid used as source of chirality as well as nitrogen. The highest antimicrobial activity was observed in the presence of the final saturated structure, the benzoanalogue of naturally occurring plant alkaloid cryptopleurine. It features selective toxicity, and significantly inhibits the growth of G+ bacteria, especially Staphylococcus sp. Tested derivatives have shown only a weak antifungal activity, but partial inhibition has been observed in the case of model yeasts.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Laxminarayan R, Duse A, Wattal C, Zaidi AK, Wertheim HF, Sumpradit N, Vlieghe E, Hara GL, Gould IM, Goossens H, Greko C, So AD, Bigdeli M, Tomson G, Woodhouse W, Ombaka E, Peralta AQ, Qamar FN, Mir F, Kariuki S, Bhutta ZA, Coates A, Bergstrom R, Wright GD, Brown ED, Cars O (2013) Lancet Infect Dis 13:1057

    Article  PubMed  Google Scholar 

  2. Gundersen LL, Charnock C, Negussie AH, Rise F, Teklu S (2007) Eur J Pharm Sci 30:26

    Article  CAS  PubMed  Google Scholar 

  3. Cushnie TT, Cushnie B, Lamb AJ (2014) Int J Antimicrob Agents 44:377

    Article  CAS  PubMed  Google Scholar 

  4. Bunsupa S, Yamazaki M, Saito K (2012) Front Plant Sci 3:239

    Article  PubMed  PubMed Central  Google Scholar 

  5. Kubo H, Kobayashi J, Higashiyama K, Kamei J, Fujii Y, Ohmiya S (2000) Biol Pharm Bull 23:1114

    Article  CAS  PubMed  Google Scholar 

  6. Guarna A, Occhiato EG, Machetti F, Trabocchi A, Scarpi D, Danza G, Comerci A, Serio M (2001) Bioorg Med Chem 9:1385

    Article  CAS  PubMed  Google Scholar 

  7. Vrábel V, Sivy J, Šafař P, Marchalín Š (2016) Acta Chim Slov 9:180

    Article  CAS  Google Scholar 

  8. Facchini PJ (2001) Annu Rev Plant Physiol Plant Mol Biol 52:29

    Article  CAS  PubMed  Google Scholar 

  9. Han R, Takahashi H, Nakamura M, Bunsupa S, Yoshimoto N, Yamamoto H, Saito K (2015) Bull Biol Pharm 38:87

    Google Scholar 

  10. Huang W, Kim SJ, Liu J, Zhang W (2015) Org Lett 17:5344

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Santhosh RS, Suriyanarayanan B (2014) Planta Med 80:9

    CAS  PubMed  Google Scholar 

  12. Wahba AE, Peng J, Kudrimoti S, Tekwani BL, Hamann MT (2009) Bioorg Med Chem 17:7775

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Locher HH, Ritz D, Pfaff P, Gaertner M, Knezevic A, Sabato D, Schroeder S, Barbaras D, Gademann K (2010) Chemotherapy 56:318

    Article  CAS  PubMed  Google Scholar 

  14. Kumar NS, Dullaghan EM, Finlay BB, Gong H, Reiner NE, Selvam JJP, Zoraghi R (2014) Bioorg Med Chem 22:1708

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Sivý J, Vrábel V, Marchalín Š, Šafář P (2015) Asian J Chem 27:2635

    Article  CAS  Google Scholar 

  16. Šafář P, Marchalín Š, Šoral M, Moncol J, Daïch A (2017) Org Lett 19:4742

    Article  CAS  PubMed  Google Scholar 

  17. Marchalín Š, Szemes F, Bar N, Decroix B (1999) Heterocycles 50:445

    Article  Google Scholar 

  18. Šafář P, Žúžiová J, Bobošikova M, Marchalín Š, Prónayová N, Comesse S (2009) Tetrahedron Asymmetry 20:2137

    Article  CAS  Google Scholar 

  19. Šafář P, Žúžiová J, Marchalín Š, Tóthova E, Prónayová N, Švorc Ľ, Vrábel V, Daïch A (2009) Tetrahedron Asymmetry 20:626

    Article  CAS  Google Scholar 

  20. Šafář P, Marchalín Š, Prónayová N, Vrábel V, Lawson AM, Othman M, Daich A (2016) Tetrahedron 72:3221

    Article  CAS  Google Scholar 

  21. Rasmussen MO, Delair P, Greene AE (2001) J Org Chem 66:5438

    Article  CAS  PubMed  Google Scholar 

  22. Rao KN, Venkatachalam SR (2000) Toxicol In Vitro 14:53

    Article  CAS  PubMed  Google Scholar 

  23. Rao KN (1998) Indian J Biochem Biophys 35:229

    CAS  PubMed  Google Scholar 

  24. Zakrzewski SF (1963) J Biol Chem 238:1485

    CAS  PubMed  Google Scholar 

  25. Baker DJ, Beddell CR, Champness JN, Goodford PJ, Norrington FEA, Smith DR, Stammers DK (1981) FEBS Lett 126:49

    Article  CAS  PubMed  Google Scholar 

  26. Markowitz N, Quinn EL, Saravolatz LD (1992) Ann Intern Med 117:390

    Article  CAS  PubMed  Google Scholar 

  27. García D, Foubelo F, Yus M (2010) Eur J Org Chem 2010:2893

    Article  CAS  Google Scholar 

  28. Yamada S, Kunieda T (1967) Chem Pharm Bull 15:490

    Article  CAS  PubMed  Google Scholar 

  29. Sheldrick GM (2015) Acta Cryst A71:3

    Google Scholar 

  30. Hübschle CB, Sheldrick GM, Dittrich B (2011) Appl Cryst 44:1281

    Article  CAS  Google Scholar 

  31. Dolomanov OV, Bourhis LJ, Gildea RJ, Howard JAK, Puschmann HJ (2009) Appl Cryst 42:339

    Article  CAS  Google Scholar 

  32. Brandenburg K (1999) DIAMOND. Crystal Impact GbR, Bonn

    Google Scholar 

  33. Clinical and Laboratory Standards Institute (CLSI) (1996) Reference method for broth dilution antifungal susceptibility testing yeast; approved standard. USA

  34. Clinical and Laboratory Standards Institute (CLSI) (2014) Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically; NCCLS document M27-A, 15, 10, VA Medical Center, Tucson; Approved standard, 8th edn. CLSI M7-A9, USA

  35. Dudová B, Hudecová D, Pokorný R, Mikulášová M, Palicová M, Segľa P, Melník M (2002) Folia Microbiol 47:225

    Article  Google Scholar 

  36. Taniguchi L, de Fátima Faria B, Rosa RT, de Paula e Carvalho A, Gursky LC, Elifio-Esposito SL, Parahitiyawa N, Samaranayake LP, Rosa EAR (2009) J Microbiol Methods 78:171

    Article  CAS  PubMed  Google Scholar 

  37. Maron D, Ames B (1983) Mut Res 113:173

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Grant Agency of the Slovak Republic (Grant no. 1/0371/16). This contribution is also the result of the project: Research Center for Industrial Synthesis of Drugs, ITMS 26240220061, supported by the Research & Development Operational Programme funded by the ERDF.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Petra Olejníková.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pagáč, T., Šafář, P., Marchalín, Š. et al. Asymmetric synthesis and study of biological activity of (epi-)benzoanalogues of bioactive phenanthroquinolizidine alkaloids. Monatsh Chem 149, 1865–1876 (2018). https://doi.org/10.1007/s00706-018-2244-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00706-018-2244-5

Keywords

Navigation