Skip to main content

Advertisement

Log in

In vivo estimation of bone stiffness at the distal femur and proximal tibia using ultra-high-field 7-Tesla magnetic resonance imaging and micro-finite element analysis

  • Short Communication
  • Published:
Journal of Bone and Mineral Metabolism Aims and scope Submit manuscript

Abstract

The goal of this study was to demonstrate the feasibility of using 7-Tesla (7T) magnetic resonance imaging (MRI) and micro-finite element analysis (µFEA) to evaluate mechanical and structural properties of whole, cortical, and trabecular bone at the distal femur and proximal tibia in vivo. 14 healthy subjects were recruited (age 40.7 ± 15.7 years). The right knee was scanned on a 7T MRI scanner using a 28 channel-receive knee coil and a three-dimensional fast low-angle shot sequence (TR/TE 20 ms/5.02 ms, 0.234 mm × 0.234 mm × 1 mm, 80 axial images, 7 min 9 s). Bone was analyzed at the distal femoral metaphysis, femoral condyles, and tibial plateau. Whole, cortical, and trabecular bone stiffness was computed using µFEA. Bone volume fraction (BVF), bone areas, and cortical thickness were measured. Trabecular bone stiffness (933.7 ± 433.3 MPa) was greater than cortical bone stiffness (216 ± 152 MPa) at all three locations (P < 0.05). Across locations, there were no differences in bone stiffness (whole, cortical, or trabecular). Whole, cortical, and trabecular bone stiffness correlated with BVF (R ≥ 0.69, P < 0.05) and inversely correlated with corresponding whole, cortical, and trabecular areas (R ≤ −0.54, P < 0.05), but not with cortical thickness (R < −0.11, P > 0.05). Whole, cortical, and trabecular stiffness correlated with body mass index (R ≥ 0.62, P < 0.05). In conclusion, at the distal femur and proximal tibia, trabecular bone contributes 66–74% of whole bone stiffness. 7T MRI and µFEA may be used as a method to provide insight into how structural properties of cortical or trabecular bone affect bone mechanical competence in vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Griffith JF, Engelke K, Genant HK (2010) Looking beyond bone mineral density: imaging assessment of bone quality. Ann N Y Acad Sci 1192:45–56

    Article  PubMed  Google Scholar 

  2. Ito M (2011) Recent progress in bone imaging for osteoporosis research. J Bone Miner Metab 29:131–140

    Article  PubMed  Google Scholar 

  3. Wehrli FW, Saha PK, Gomberg BR et al (2002) Role of magnetic resonance for assessing structure and function of trabecular bone. Top Magn Reson Imaging 13:335–355

    Article  PubMed  Google Scholar 

  4. Watts NB (2004) Fundamentals and pitfalls of bone densitometry using dual-energy X-ray absorptiometry (DXA). Osteoporos Int 15:847–854

    Article  PubMed  Google Scholar 

  5. Bolotin HH (2007) DXA in vivo BMD methodology: an erroneous and misleading research and clinical gauge of bone mineral status, bone fragility, and bone remodelling. Bone 41:138–154

    Article  PubMed  CAS  Google Scholar 

  6. Rizzoli R (2010) Microarchitecture in focus. Osteoporos Int 21(Suppl 2):S403–S406

    Article  PubMed  Google Scholar 

  7. Walker MD, Liu XS, Stein E et al (2011) Differences in bone microarchitecture between postmenopausal Chinese-American and white women. J Bone Miner Res 26:1392–1398

    Article  PubMed  Google Scholar 

  8. Liu XS, Walker MD, McMahon DJ et al (2011) Better skeletal microstructure confers greater mechanical advantages in Chinese–American women versus white women. J Bone Miner Res 26:1783–1792

    Article  PubMed  Google Scholar 

  9. Majumdar S (2002) Magnetic resonance imaging of trabecular bone structure. Top Magn Reson Imaging 13:323–334

    Article  PubMed  Google Scholar 

  10. Wehrli FW (2007) Structural and functional assessment of trabecular and cortical bone by micro magnetic resonance imaging. J Magn Reson Imaging 25:390–409

    Article  PubMed  Google Scholar 

  11. Melton LJ 3rd, Riggs BL, Keaveny TM et al (2010) Relation of vertebral deformities to bone density, structure, and strength. J Bone Miner Res 25:1922–1930

    Article  PubMed  Google Scholar 

  12. Wehrli FW, Gomberg BR, Saha PK, Song HK, Hwang SN, Snyder PJ (2001) Digital topological analysis of in vivo magnetic resonance microimages of trabecular bone reveals structural implications of osteoporosis. J Bone Miner Res 16:1520–1531

    Article  PubMed  CAS  Google Scholar 

  13. Majumdar S, Link TM, Augat P et al (1999) Trabecular bone architecture in the distal radius using magnetic resonance imaging in subjects with fractures of the proximal femur. Magnetic Resonance Science Center and Osteoporosis and Arthritis Research Group. Osteoporos Int 10:231–239

    Article  PubMed  CAS  Google Scholar 

  14. Gold GE, Suh B, Sawyer-Glover A, Beaulieu C (2004) Musculoskeletal MRI at 3.0 T: initial clinical experience. Am J Roentgenol 183:1479–1486

    Google Scholar 

  15. Robitaille P-M, Berliner LJ (2006) Ultra high-field magnetic resonance imaging. Springer, New York

    Google Scholar 

  16. Regatte RR, Schweitzer ME (2007) Ultra-high-field MRI of the musculoskeletal system at 7.0T. J Magn Reson Imaging 25:262–269

    Article  PubMed  Google Scholar 

  17. Krug R, Stehling C, Kelley DA, Majumdar S, Link TM (2009) Imaging of the musculoskeletal system in vivo using ultra-high field magnetic resonance at 7 T. Invest Radiol 44:613–618

    Article  PubMed  Google Scholar 

  18. Krug R, Carballido-Gamio J, Banerjee S, Burghardt AJ, Link TM, Majumdar S (2008) In vivo ultra-high-field magnetic resonance imaging of trabecular bone microarchitecture at 7 T. J Magn Reson Imaging 27:854–859

    Article  PubMed  Google Scholar 

  19. Banerjee S, Krug R, Carballido-Gamio J et al (2008) Rapid in vivo musculoskeletal MR with parallel imaging at 7T. Magn Reson Med 59:655–660

    Article  PubMed  Google Scholar 

  20. Chang G, Pakin SK, Schweitzer ME, Saha PK, Regatte RR (2008) Adaptations in trabecular bone microarchitecture in Olympic athletes determined by 7T MRI. J Magn Reson Imaging 27:1089–1095

    Article  PubMed  Google Scholar 

  21. Chang G, Friedrich KM, Wang L et al (2010) MRI of the wrist at 7 tesla using an eight-channel array coil combined with parallel imaging: preliminary results. J Magn Reson Imaging 31:740–746

    Article  PubMed  Google Scholar 

  22. Magland JF, Rajapakse CS, Wright AC, Acciavatti R, Wehrli FW (2010) 3D fast spin echo with out-of-slab cancellation: a technique for high-resolution structural imaging of trabecular bone at 7 Tesla. Magn Reson Med 63:719–727

    Article  PubMed  Google Scholar 

  23. Bhagat YA, Rajapakse CS, Magland JF et al (2011) Performance of muMRI-based virtual bone biopsy for structural and mechanical analysis at the distal tibia at 7T field strength. J Magn Reson Imaging 33:372–381

    Article  PubMed  Google Scholar 

  24. van Rietbergen B, Majumdar S, Pistoia W et al (1998) Assessment of cancellous bone mechanical properties from micro-FE models based on micro-CT, pQCT and MR images. Technol Health Care 6:413–420

    PubMed  Google Scholar 

  25. Rajapakse CS, Magland J, Zhang XH et al (2009) Implications of noise and resolution on mechanical properties of trabecular bone estimated by image-based finite-element analysis. J Orthop Res 27:1263–1271

    Article  PubMed  Google Scholar 

  26. Finnerty MYX, Zheng T, Heilman J, Castrilla N, Herczak J, Fujita H, Ibrahim TS, Boada F, Zhao T, Schmitt F, Stoeckel B, Potthast A, Wicklow K, Trattnig S, Mamisch C, Recht M, Sodickson D, Wiggins G, Zhu Y (2010) A 7-Tesla high density transmit with 28-channel receive-only array knee coil. International Society of Magnetic Resonance in Medicine, Stockholm, Sweden

  27. Krug R, Carballido-Gamio J, Banerjee S et al (2007) In vivo bone and cartilage MRI using fully-balanced steady-state free-precession at 7 tesla. Magn Reson Med 58:1294–1298

    Article  PubMed  Google Scholar 

  28. Kim N, Lee JG, Song Y, Kim HJ, JSY, Cho G (2011) Evaluation of MRI resolution affecting trabecular bone parameters: determination of acceptable resolution. Magn Reson Med. doi:10.002/mrm.22984

  29. Vasilic B, Wehrli FW (2005) A novel local thresholding algorithm for trabecular bone volume fraction mapping in the limited spatial resolution regime of in vivo MRI. IEEE Trans Med Imaging 24:1574–1585

    Article  PubMed  Google Scholar 

  30. Rajapakse CS, Magland JF, Wald MJ et al (2010) Computational biomechanics of the distal tibia from high-resolution MR and micro-CT images. Bone 47:556–563

    Article  PubMed  Google Scholar 

  31. Wehrli FW, Rajapakse CS, Magland JF, Snyder PJ (2010) Mechanical implications of estrogen supplementation in early postmenopausal women. J Bone Miner Res 25:1406–1414

    Article  PubMed  CAS  Google Scholar 

  32. Liu XS, Zhang XH, Rajapakse CS et al (2010) Accuracy of high-resolution in vivo micro magnetic resonance imaging for measurements of microstructural and mechanical properties of human distal tibial bone. J Bone Miner Res 25:2039–2050

    Article  PubMed  Google Scholar 

  33. Guo XE, Goldstein XA (1997) Is trabecular bone tissue different from cortical bone tissue? Forma 12:185–196

    Google Scholar 

  34. Edwards WT, Zheng Y, Ferrara LA, Yuan HA (2001) Structural features and thickness of the vertebral cortex in the thoracolumbar spine. Spine (Phila Pa 1976) 26:218–225

    Article  CAS  Google Scholar 

  35. Silva MJ, Wang C, Keaveny TM, Hayes WC (1994) Direct and computed tomography thickness measurements of the human, lumbar vertebral shell and endplate. Bone 15:409–414

    Article  PubMed  CAS  Google Scholar 

  36. Seeman E (2003) The structural and biomechanical basis of the gain and loss of bone strength in women and men. Endocrinol Metab Clin North Am 32:25–38

    Article  PubMed  CAS  Google Scholar 

  37. Felson DT, Neogi T (2004) Osteoarthritis: is it a disease of cartilage or of bone? Arthritis Rheum 50:341–344

    Article  PubMed  Google Scholar 

  38. De Laet C, Kanis JA, Oden A et al (2005) Body mass index as a predictor of fracture risk: a meta-analysis. Osteoporos Int 16:1330–1338

    Article  PubMed  Google Scholar 

  39. Kanis JA, Johnell O, Oden A, Johansson H, McCloskey E (2008) FRAX and the assessment of fracture probability in men and women from the UK. Osteoporos Int 19:385–397

    Article  PubMed  CAS  Google Scholar 

  40. Roemer PB, Edelstein WA, Hayes CE, Souza SP, Mueller OM (1990) The NMR phased array. Magn Reson Med 16:192–225

    Article  PubMed  CAS  Google Scholar 

  41. Wiggins GC, Triantafyllou C, Potthast A, Reykowski A, Nittka M, Wald LL (2006) 32-channel 3 Tesla receive-only phased-array head coil with soccer-ball element geometry. Magn Reson Med 56:216–223

    Article  PubMed  CAS  Google Scholar 

  42. Wiggins GC, Polimeni JR, Potthast A, Schmitt M, Alagappan V, Wald LL (2009) 96-Channel receive-only head coil for 3 Tesla: design optimization and evaluation. Magn Reson Med 62:754–762

    Article  PubMed  Google Scholar 

  43. Krug R, Banerjee S, Han ET, Newitt DC, Link TM, Majumdar S (2005) Feasibility of in vivo structural analysis of high-resolution magnetic resonance images of the proximal femur. Osteoporos Int 16:1307–1314

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors acknowledge grant support from the Radiological Society of North America (RSNA RR0806) and the United States National Institutes of Health (K23-AR059748, R01-AR053133, R01-AR056260).

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gregory Chang.

About this article

Cite this article

Chang, G., Rajapakse, C.S., Babb, J.S. et al. In vivo estimation of bone stiffness at the distal femur and proximal tibia using ultra-high-field 7-Tesla magnetic resonance imaging and micro-finite element analysis. J Bone Miner Metab 30, 243–251 (2012). https://doi.org/10.1007/s00774-011-0333-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00774-011-0333-1

Keywords

Navigation