Skip to main content
Log in

Crystal structure of a hypothetical protein, TTHA0829 from Thermus thermophilus HB8, composed of cystathionine-β-synthase (CBS) and aspartate-kinase chorismate-mutase tyrA (ACT) domains

  • Original Paper
  • Published:
Extremophiles Aims and scope Submit manuscript

Abstract

TTHA0829 from Thermus thermophilus HB8 has a molecular mass of 22,754 Da and is composed of 210 amino acid residues. The expression of TTHA0829 is remarkably elevated in the latter half of logarithmic growth phase. TTHA0829 can form either a tetrameric or dimeric structure, and main-chain folding provides an N-terminal cystathionine-β-synthase (CBS) domain and a C-terminal aspartate-kinase chorismate-mutase tyrA (ACT) domain. Both CBS and ACT are regulatory domains to which a small ligand molecule can bind. The CBS domain is found in proteins from organisms belonging to all kingdoms and is observed frequently as two or four tandem copies. This domain is considered as a small intracellular module with a regulatory function and is typically found adjacent to the active (or functional) site of several enzymes and integral membrane proteins. The ACT domain comprises four β-strands and two α-helices in a βαββαβ motif typical of intracellular small molecule binding domains that help control metabolism, solute transport and signal transduction. We discuss the possible role of TTHA0829 based on its structure and expression pattern. The results imply that TTHA0829 acts as a cell-stress sensor or a metabolite acceptor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abrahams JP, Leslie AGW (1996) Methods used in the structure determination of bovine mitochondrial F1 ATPase. Acta Crystallogr Sect D 52:30–42

    Article  CAS  Google Scholar 

  • Bacon J et al (2004) The influence of reduced oxygen availability on pathogenicity and gene expression in Mycobacterium tuberculosis. Tuberculosis 84:205–217

    Article  PubMed  Google Scholar 

  • Bateman A (1997) The structure of a domain common to archaebacteria and the homocystinuria disease protein. Trends Biochem Sci 22:12–13. doi:10.1016/S0968-0004(96)30046-7

    Article  CAS  PubMed  Google Scholar 

  • Brunger AT (1992) Free R value: a novel statistical quantity for assessing the accuracy of crystal structures. Nature 355:472–475

    Article  CAS  PubMed  Google Scholar 

  • Brunger AT et al (1998) Crystallography & NMR system: a new software suite for macromolecular structure determination. Acta Crystallogr Sect D 54:905–921

    Article  CAS  Google Scholar 

  • Chivers PT, Tahirov TH (2005) Structure of Pyrococcus horikoshii NikR: nickel sensing and implications for the regulation of DNA recognition. J Mol Biol 348:597–607. doi:10.1016/j.jmb.2005.03.017

    Article  CAS  PubMed  Google Scholar 

  • Cho Y, Sharma V, Sacchettini JC (2003) Crystal structure of ATP phosphoribosyltransferase from Mycobacterium tuberculosis. J Biol Chem 278:8333–8339. doi:10.1074/jbc.M212124200

    Article  CAS  PubMed  Google Scholar 

  • Cohen SX et al (2004) Towards complete validated models in the next generation of ARP/wARP. Acta Crystallogr D Biol Crystallogr 60:2222–2229

    Article  PubMed  Google Scholar 

  • Colby TD, Vanderveen K, Strickler MD, Markham GD, Goldstein BM (1999) Crystal structure of human type II inosine monophosphate dehydrogenase: implications for ligand binding and drug design. Proc Natl Acad Sci USA 96:3531–3536

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cowtan K (1994) Joint CCP4 and ESF-EACBM Newsletter on Protein Crystallography 31:34–38

  • Day P et al (2007) Structure of a CBS-domain pair from the regulatory [gamma]1 subunit of human AMPK in complex with AMP and ZMP. Acta Crystallogr Sect D 63:587–596

    Article  CAS  Google Scholar 

  • de La Fortelle E, Bricogne G (1997) [27] Maximum-likelihood heavy-atom parameter refinement for multiple isomorphous replacement and multiwavelength anomalous diffraction methods. In: Methods in Enzymology, vol Volume 276. Academic Press, pp 472–494. doi:http://dx.doi.org/10.1016/S0076-6879(97)76073-7

  • Devedjiev Y et al (2004) The structure and ligand binding properties of the B. subtilis YkoF gene product, a member of a novel family of thiamin/HMP-binding proteins. J Mol Biol 343:395–406. doi:10.1016/j.jmb.2004.08.037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dey S, Grant GA, Sacchettini JC (2005) Crystal structure of Mycobacterium tuberculosis D-3-phosphoglycerate dehydrogenase: extreme asymmetry in a tetramer of identical subunits. J Biol Chem 280:14892–14899. doi:10.1074/jbc.M414489200

    Article  CAS  PubMed  Google Scholar 

  • Gallagher DT, Gilliland GL, Xiao G, Zondlo J, Fisher KE, Chinchilla D, Eisenstein E (1998) Structure and control of pyridoxal phosphate dependent allosteric threonine deaminase. Structure 6:465–475

    Article  CAS  PubMed  Google Scholar 

  • Gomez-Garcia I, Oyenarte I, Martinez-Cruz LA (2010) The crystal structure of protein MJ1225 from Methanocaldococcus jannaschii shows strong conservation of key structural features seen in the eukaryal gamma-AMPK. J Mol Biol 399:53–70

    Article  CAS  PubMed  Google Scholar 

  • Grant GA (2006) The ACT domain: a small molecule binding domain and its role as a common regulatory element. J Biol Chem 281:33825–33829. doi:10.1074/jbc.R600024200

    Article  CAS  PubMed  Google Scholar 

  • Hardie DG, Hawley SA (2001) AMP-activated protein kinase: the energy charge hypothesis revisited. BioEssays 23:1112–1119

    Article  CAS  PubMed  Google Scholar 

  • Hattori M, Tanaka Y, Fukai S, Ishitani R, Nureki O (2007) Crystal structure of the MgtE Mg2+ transporter. Nature 448:1072–1075. doi:10.1038/nature06093

    Article  CAS  PubMed  Google Scholar 

  • Hendrickson WA, Horton JR, LeMaster DM (1990) Selenomethionyl proteins produced for analysis by multiwavelength anomalous diffraction (MAD): a vehicle for direct determination of three-dimensional structure. EMBO J 9:1665–1672

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ignoul S, Eggermont J (2005) CBS domains: structure, function, and pathology in human proteins. Am J Physiol Cell Physiol 289:C1369–C1378

    Article  CAS  PubMed  Google Scholar 

  • Iino H et al (2008) Crystallization screening test for the whole-cell project on Thermus thermophilus HB8. Acta Crystallogr Sect F Struct Biol Cryst Commun 64:487–491

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaplun A et al (2006) Structure of the regulatory subunit of acetohydroxyacid synthase isozyme III from Escherichia coli. J Mol Biol 357:951–963. doi:10.1016/j.jmb.2005.12.077

    Article  CAS  PubMed  Google Scholar 

  • Kim HJ, Jourlin-Castelli C, Kim SI, Sonenshein AL (2002) Regulation of the bacillus subtilis ccpC gene by ccpA and ccpC. Mol Microbiol 43:399–410

    Article  PubMed  Google Scholar 

  • King NP, Lee TM, Sawaya MR, Cascio D, Yeates TO (2008) Structures and functional implications of an AMP-binding cystathionine beta-synthase domain protein from a hyperthermophilic archaeon. J Mol Biol 380:181–192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kobe B et al (1999) Structural basis of autoregulation of phenylalanine hydroxylase. Nat Struct Biol 6:442–448. doi:10.1038/8247

    Article  CAS  PubMed  Google Scholar 

  • Kotaka M, Ren J, Lockyer M, Hawkins AR, Stammers DK (2006) Structures of R- and T-state Escherichia coli aspartokinase III. Mechanisms of the allosteric transition and inhibition by lysine. J Biol Chem 281:31544–31552. doi:10.1074/jbc.M605886200

    Article  CAS  PubMed  Google Scholar 

  • Kozlov G, Elias D, Semesi A, Yee A, Cygler M, Gehring K (2004) Structural similarity of YbeD protein from Escherichia coli to allosteric regulatory domains. J Bacteriol 186:8083–8088. doi:10.1128/jb.186.23.8083-8088.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krissinel E, Henrick K (2007) Inference of macromolecular assemblies from crystalline state. J Mol Biol 372:774–797

    Article  CAS  PubMed  Google Scholar 

  • Labesse G et al (2013) MgATP regulates allostery and fiber formation in IMPDHs. Structure 21:975–985

    Article  CAS  PubMed  Google Scholar 

  • Laskowski RA, MacArthur MW, Moss DS, Thornton JM (1993) PROCHECK: a program to check the stereochemical quality of protein structures. J Appl Crystallogr 26:283–291

    Article  CAS  Google Scholar 

  • Leonard PM et al (2001) Crystal structure of the Lrp-like transcriptional regulator from the archaeon Pyrococcus furiosus. Embo J 20:990–997. doi:10.1093/emboj/20.5.990

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lohkamp B, McDermott G, Campbell SA, Coggins JR, Lapthorn AJ (2004) The structure of Escherichia coli ATP-phosphoribosyltransferase: identification of substrate binding sites and mode of AMP inhibition. J Mol Biol 336:131–144

    Article  CAS  PubMed  Google Scholar 

  • Lucas M et al (2010) Binding of S-methyl-5′-thioadenosine and S-adenosyl-l-methionine to protein MJ0100 triggers an open-to-closed conformational change in its CBS motif pair. J Mol Biol 396:800–820

    Article  CAS  PubMed  Google Scholar 

  • Markovic S, Dutzler R (2007) The structure of the cytoplasmic domain of the chloride channel ClC-Ka reveals a conserved interaction interface. Structure 15:715–725. doi:10.1016/j.str.2007.04.013

    Article  CAS  PubMed  Google Scholar 

  • Mas-Droux C, Curien G, Robert-Genthon M, Laurencin M, Ferrer JL, Dumas R (2006) A novel organization of ACT domains in allosteric enzymes revealed by the crystal structure of Arabidopsis aspartate kinase. Plant Cell 18:1681–1692. doi:10.1105/tpc.105.040451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matthews BW (1968) Solvent content of protein crystals. J Mol Biol 33:491–497

    Article  CAS  PubMed  Google Scholar 

  • McRee DE (1999) XtalView/Xfit–A versatile program for manipulating atomic coordinates and electron density. J Struct Biol 125:156–165

    Article  CAS  PubMed  Google Scholar 

  • Meyer S, Dutzler R (2006) Crystal structure of the cytoplasmic domain of the chloride channel CLC-0. Structure 14:299–307. doi:10.1016/j.str.2005.10.008

    Article  CAS  PubMed  Google Scholar 

  • Meyer S, Savaresi S, Forster IC, Dutzler R (2007) Nucleotide recognition by the cytoplasmic domain of the human chloride transporter ClC-5. Nat Struct Mol Biol 14:60–67. doi:http://www.nature.com/nsmb/journal/v14/n1/suppinfo/nsmb1188_S1.html

  • Miller MD et al (2004) Crystal structure of a tandem cystathionine-beta-synthase (CBS) domain protein (TM0935) from Thermotoga maritima at 1.87 A resolution. Proteins 57:213–217

    Article  CAS  PubMed  Google Scholar 

  • Muttucumaru DG, Roberts G, Hinds J, Stabler RA, Parish T (2004) Gene expression profile of Mycobacterium tuberculosis in a non-replicating state. Tuberculosis 84:239–246

    Article  PubMed  Google Scholar 

  • Otagiri M, Kurisu G, Ui S, Takusagawa Y, Ohkuma M, Kudo T, Kusunoki M (2001) Crystal structure of meso-2,3-butanediol dehydrogenase in a complex with NAD+ and inhibitor mercaptoethanol at 1.7 A resolution for understanding of chiral substrate recognition mechanisms. J Biochem 129:205–208

    Article  CAS  PubMed  Google Scholar 

  • Otwinowski Z, Minor W (1997) Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol 276:307–326

    Article  CAS  Google Scholar 

  • Proudfoot M et al (2008) Biochemical and structural characterization of a novel family of cystathionine beta-synthase domain proteins fused to a Zn ribbon-like domain. J Mol Biol 375:301–315

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rao VA, Shepherd SM, Owen R, Hunter WN (2013) Structure of Pseudomonas aeruginosa inosine 5′-monophosphate dehydrogenase. Acta Crystallogr, Sect F: Struct Biol Cryst Commun 69:243–247

    Article  CAS  Google Scholar 

  • Rosenkrands I, Slayden RA, Crawford J, Aagaard C, C. E. Barry r, Andersen P (2002) Hypoxic response of Mycobacterium tuberculosis studied by metabolic labeling and proteome analysis of cellular and extracellular proteins. Journal of bacteriology 184:3485–3491

  • Rudolph MJ, Amodeo GA, Iram SH, Hong S-P, Pirino G, Carlson M, Tong L (2007) Structure of the Bateman2 domain of yeast Snf4: dimeric association and relevance for AMP binding. Structure 15:65–74. doi:10.1016/j.str.2006.11.014

    Article  CAS  PubMed  Google Scholar 

  • Schreiter ER, Sintchak MD, Guo Y, Chivers PT, Sauer RT, Drennan CL (2003) Crystal structure of the nickel-responsive transcription factor NikR. Nat Struct Biol 10:794–799. doi:10.1038/nsb985

    Article  CAS  PubMed  Google Scholar 

  • Schuller DJ, Grant GA, Banaszak LJ (1995) The allosteric ligand site in the Vmax-type cooperative enzyme phosphoglycerate dehydrogenase. Nat Struct Biol 2:69–76

    Article  CAS  PubMed  Google Scholar 

  • Sharpe ML, Baker EN, Lott JS (2005) Crystallization of a protein using dehydration without a precipitant. Acta Crystallogr Sect F Struct Biol Cryst Commun 61:565–568

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sharpe ML, Gao C, Kendall SL, Baker EN, Lott JS (2008) The structure and unusual protein chemistry of hypoxic response protein 1, a latency antigen and highly expressed member of the DosR regulon in Mycobacterium tuberculosis. J Mol Biol 383:822–836

    Article  CAS  PubMed  Google Scholar 

  • Sherman DR, Voskuil M, Schnappinger D, Liao R, Harrell MI, Schoolnik GK (2001) Regulation of the Mycobacterium tuberculosis hypoxic response gene encoding alpha-crystallin. Proc Natl Acad Sci USA 98:7534–7539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shinkai A, Kira S, Nakagawa N, Kashihara A, Kuramitsu S, Yokoyama S (2007) Transcription activation mediated by a cyclic AMP receptor protein from Thermus thermophilus HB8. J Bacteriol 189:3891–3901

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sintchak MD et al (1996) Structure and mechanism of inosine monophosphate dehydrogenase in complex with the immunosuppressant mycophenolic acid. Cell 85:921–930

    Article  PubMed  Google Scholar 

  • Ueno G, Hirose R, Ida K, Kumasaka T, Yamamoto M (2004) Sample management system for a vast amount of frozen crystals at SPring-8. J Appl Crystallogr 37:867–873

    Article  CAS  Google Scholar 

  • Voskuil MI, Schnappinger D, Visconti KC, Harrell MI, Dolganov GM, Sherman DR, Schoolnik GK (2003) Inhibition of respiration by nitric oxide induces a Mycobacterium tuberculosis dormancy program. J Exp Med 198:705–713

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weeks CM, Miller R (1999) The design and implementation of SnB version 2.0. J Appl Crystallogr 32:120–124

    Article  CAS  Google Scholar 

  • Yokoyama S et al (2000) Structural genomics projects in Japan. Nat Struct Biol 7:943–945

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was greatly assisted by contribution from Ms. Fujie Shinkai in RIKEN SPring-8 Center, Harima Institute, for the expression and purification of TTHA0829 sample.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Makoto Nakabayashi or Naoki Shibata.

Additional information

Communicated by S. Albers.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 2437 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nakabayashi, M., Shibata, N., Ishido-Nakai, E. et al. Crystal structure of a hypothetical protein, TTHA0829 from Thermus thermophilus HB8, composed of cystathionine-β-synthase (CBS) and aspartate-kinase chorismate-mutase tyrA (ACT) domains. Extremophiles 20, 275–282 (2016). https://doi.org/10.1007/s00792-016-0817-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00792-016-0817-y

Keywords

Navigation