Skip to main content
Log in

Impacts of agricultural irrigation recharge on groundwater quality in a basalt aquifer system (Washington, USA): a multi-tracer approach

Impacts de la recharge par irrigation agricole sur la qualité des eaux souterraines d’un système aquifère basaltique (Washington, Etats-Unis): une approche multi-traceurs

Impactos de la recarga por irrigación agrícola en la calidad de agua subterránea en un sistema acuífero basáltico (Washington, USA): un enfoque de multitrazadores

利用多种示踪剂研究美国华盛顿地区某玄武岩含水层中农业灌溉水补给对地下水水质的影响

Impactes da recarga da rega agrícola na qualidade da água subterrânea de um sistema aquífero basáltico (Washington, EUA): uma abordagem com traçadores múltiplos

  • Report
  • Published:
Hydrogeology Journal Aims and scope Submit manuscript

Abstract

Irrigation in semi-arid agricultural regions can have profound effects on recharge rates and the quality of shallow groundwater. This study coupled stable isotopes (2Η, 18O), age-tracers (3H, CFCs, 14C), 87Sr/86Sr ratios, and elemental chemistry to determine the sources, residence times, and flowpaths of groundwater and agricultural contaminants (e.g. NO 3 ) in the Saddle Mountains Basalt Aquifer in central Washington, USA, where over 80% of the population depend on groundwater for domestic use. Results demonstrate the presence of two distinct types of water: contaminated irrigation water and pristine regional groundwater. Contaminated irrigation water has high NO 3 concentrations (11–116  mg/l), 87Sr/86Sr ratios (0.70659–0.71078) within range of nitrogen-based fertilizers, detectable tritium (2.8–13.4 TU), CFC ages 20–40 years, high δ18O values (−16.9 to −13.5‰), and ∼100 percent modern 14C. Pristine regional groundwater has low NO 3 concentrations (1–5  mg/l), no detectable tritium (≤0.8 TU), low δ18O values (−18.9 to −17.3‰) and 14C ages from ∼15 to 33 ky BP. Nitrogen and oxygen isotopes of NO 3 , combined with high dissolved oxygen values, show that denitrification is not an important process in the organic-poor basalt aquifers resulting in transport of high NO 3 irrigation water to depths greater than 40 m in less than 30  years.

Résumé

L’irrigation dans des régions agricoles semi-arides peut avoir des effets importants sur les taux de recharge et la qualité des aquifères superficiels. Cette étude combine l’utilisation des isotopes stables de l’eau (2Η, 18O), des traceurs d’âges (3H, CFCs, 14C), du rapport 87Sr/86Sr et de la chimie élémentaire afin de déterminer les sources, les temps de résidence et les flux préférentiels des eaux souterraines et des contaminants agricoles (comme le NO 3 ) dans l’aquifère basaltique de Saddle Mountains, Washington central, Etats-Unis, dont plus de 80% de la population dépend pour un usage domestique. Les résultats montrent la présence de deux types distincts d’eau: l’eau d’irrigation contaminée et l’eau souterraine régionale pure. Les eaux d’irrigation contaminées ont de fortes concentrations en NO 3 (11–116 mg/l), un rapport 87Sr/86Sr (0.70659–0.71078) dans la gamme des fertilisants azotés, un tritium détectable (2.8–13.4 TU), des âge-CFC de 20–40 ans, un δ18O élevé (–16.9 to –13.5‰) et ∼100% de 14C moderne. Les eaux souterraines régionales pures ont de faibles concentrations en NO 3 (1–5 mg/l), un tritium non détectable (<0.8 TU), un δ18O bas (–18.9 to –17.3‰) et des âges 14C de ∼15 000 à 33 000 ans BP. Les isotopes de l’azote et de l’oxygène du NO 3 combinés à de fortes concentrations en oxygène dissous montrent que le transport des eaux d’irrigation très enrichies en NO 3 en moins de 30 ans à des profondeurs supérieures à 40 m n’est pas un processus important de dénitrification dans les aquifères basaltiques pauvres en matière organique.

Resumen

La irrigación en regiones agrícolas semiáridas pueden tener profundos efectos en los ritmos de recarga y en la calidad del agua subterránea somera. Este estudio acopla los isótopos estables (2Η, 18O), los trazadores de edad (3H, CFCs, 14C), las relaciones 87Sr/86Sr, y la química elemental para determinar las fuentes, tiempos de residencia y trayectorias del agua subterránea y de los contaminantes agrícolas (por ejemplo NO 3 ) en el acuífero basáltico de Saddle Mountains en Washington central, EEUU, donde más del 80% de la población depende del agua subterránea para usos domésticos. Los resultados demuestran la presencia de dos tipos diferentes de aguas, agua de riego contaminada y agua subterránea regional prístina. Las aguas de riego contaminadas tienen altas concentraciones de NO 3 (11–116 mg/l), relaciones 87Sr/86Sr (0.70659–0.71078) dentro de los intervalos de fertilizantes nitrogenadas, tritio detectable (2.8–13.4 UT), edades CFC 20 a 40 años, altos valores de δ18O (–16.9 a –13.5‰), y ∼100 por ciento de 14C moderno. El agua subterránea regional prístina tiene baja concentración de NO 3 (1–5 mg/l), cantidades de tritio no detectables (≤0.8 TU), bajos valores de δ18O (–18.9 a –17.3‰) y edades 14C desde ∼15 a 33 k años AP. Los isótopos de nitrógeno y oxígeno de NO 3 , combinados con altos valores de oxígeno disuelto, muestran que la desnitrificación no es un proceso importante en los acuíferos basálticos pobremente orgánicos, lo que resulta en el transporte valores altos de NO 3 en el agua de irrigación a profundidades mayores que 40 m en menos que 30 años.

摘要:农业回灌对半干旱地区的地下水补给速率和浅部地下水水质影响很大。本研究综合利用稳定同位素(2H, 18O),年龄示踪剂(3H, CFCs, 14C),87Sr/86Sr 比值和水化学技术来确定美国华盛顿中部Saddle山玄武岩含水层的地下水补给来源,滞留时间和流动路径以及农业污染物(如NO 3 )。地下水为研究区80%以上的人口的生活用水。结果证明了研究区存在污染的灌溉水和原生的区域地下水这两种截然不同的水。污染的灌溉水NO 3 浓度较高(11–116 mg/l),87Sr/86Sr 比值(0.70659–0.71078)在氮肥的变化范围内,氚可检出(2.8–13.4 TU),CFC年龄为20–40岁, 18O 值高 (–16.9 to –13.5‰), 14C活度约为100pmC。原生区域地下水NO 3 浓度低(1–5 mg/l),无氚检出(≤0.8 TU), 18O 值低(–18.9 to –17.3‰),14C 年龄表明其为15000–33000年以前的老水。NO 3 的氮氧同位素以及高溶解氧表明在有机质贫乏的玄武岩含水层中反硝化作用不明显,这也导致在过去30年不到的时间里高NO 3 浓度的灌溉水运移至40米以深的含水层中。

Resumo

A rega em regiões agrícolas semi-áridas pode produzir efeitos notórios nas taxas de recarga e na qualidade da água subterrânea freática. Neste estudo foram usados isótopos estáveis acoplados (2Η, 18O), traçadores da idade (3H, CFCs, 14C), rácios 87Sr/86Sr e química elementar para determinar as origens, os tempos de residência e as linhas de fluxo da água subterrânea e de contaminantes agrícolas (como o NO 3 ) no Aquífero das Montanhas Basálticas de Saddle, no centro de Washington, EUA, onde cerca de 80% da população depende da água subterrânea para uso doméstico. Os resultados revelam a presença de dois tipos de água: água contaminada pela rega e água subterrânea regional não contaminada. As águas contaminadas pela rega têm elevada concentração de NO 3 (11–116 mg/l), rácios de 87Sr/86Sr (0.70659–0.71078) que estão dentro da gama observada em fertilizantes azotados, trítio detectável (2.8–13.4 TU), idades CFC de 20 a 40 anos, valores elevados de δ18O (–16.9 to –13.5‰) e ∼100% 14C moderno. A água subterrânea regional não contaminada tem baixa concentração de NO 3 (1–5 mg/l), trítio não detectável (≤0.8 TU), valores baixos de δ18O (–18.9 to –17.3‰) e idade de 14C desde ∼15 a 33 mil anos atrás. Os isótopos de oxigénio e azoto da molécula de NO 3 , aliados a elevados teores de oxigénio dissolvido, mostram que a desnitrificação não é um processo importante nos aquíferos basálticos pobres em matéria orgânica, o que conduz ao transporte de água de rega rica em NO 3 até profundidades superiores a 40 m em menos de 30 anos.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Bauer HH, Vaccaro JJ (1990) Estimates of ground-water recharge to the Columbia Plateau Regional Aquifer System, Washington, Oregon, and Idaho, for predevelopment and current land-use conditions. US Geol Surv Water Resour Invest Rep 88-4108

    Google Scholar 

  • Bauer HH, Hansen AJ Jr (2000) Hydrology of the Columbia Plateau Regional Aquifer System, Washington, Oregon, and Idaho. US Geol Surv Water Resour Invest Rep 96-4106

    Google Scholar 

  • Böhlke JK (2002) Groundwater recharge and agricultural contamination. Hydrogeol J 10:153–179

    Article  Google Scholar 

  • Böhlke JK, Denver JM (1995) Combined use of groundwater dating, chemical, and isotopic analyses to resolve the history and fate of nitrate contamination in two agricultural watersheds, Atlantic coastal plain, Maryland. Water Resour Res 31:2319–2339

    Article  Google Scholar 

  • Böhlke JK, Horan M (2000) Strontium isotope geochemistry of groundwaters and streams affected by agriculture, Locust Grove, MD. Appl Geochem 15:599–609

    Article  Google Scholar 

  • Borg L, Banner J (1996) Neodymium and strontium isotopic constraints on soil sources in Barbados, West Indies. Geochim Cosmochim Ac 60:4193–4206

    Article  Google Scholar 

  • Brenot A, Baran N, Petelet-Giraud E, Negrèl P (2008) Interaction between different water bodies in a small catchment in the Paris Basin (Brèvilles, France): tracing of multiple Sr sources through Sr isotopes coupled with Mg/Sr and Ca/Sr ratios. Appl Geochem 23:58–75

    Article  Google Scholar 

  • Brown KB, McIntosh JC, Baker V, Gosch D (2010) Isotopically-depleted late Pleistocene groundwater in Columbia River Basalts: evidence for recharge of Glacial Lake Missoula floodwaters? Geophys Res Lett 37:L21402. doi:10.1029/2010GL044992

    Article  Google Scholar 

  • Bullister JL, Weiss RF (1983) Anthropogenic Chlorofluoromethanes in the Greenland and Norwegian Seas. Science 221:265–268

    Article  Google Scholar 

  • Busenberg E, Plummer LN (2006) CFC-2005-2a: USGS spreadsheet program for preliminary evaluation of CFC data. In: Use of chlorofluorocarbons in hydrology: a guidebook. International Atomic Energy Agency, Vienna

  • CBGWMA (2010) Columbia Basin Ground Water Management Area website. http://www.cbgwma.org. Cited December 2009

  • Clark I, Fritz P (1997) Environmental isotopes in hydrogeology. Lewis, New York

    Google Scholar 

  • Craig H (1961) Isotopic variations in meteoric waters. Science 133:1702–1703

    Article  Google Scholar 

  • Douglas AA, Osiensky JL, Keller CK (2007) Carbon-14 dating of ground water in the Palouse Basin of the Columbia River basalts. J Hydrol 334:502–512

    Article  Google Scholar 

  • Frans LM (2000) Estimating the probability of elevated nitrate (NO2 + NO3-N) concentrations in ground water in the Columbia Basin Ground Water Management Area, Washington. US Geol Surv Water Resour Invest Rep 00-4110

    Google Scholar 

  • Frans LM, Helsel DR (2005) Evaluating regional trends in ground-water nitrate concentrations of the Columbia Basin Ground Water Management Area, Washington. US Geol Surv Sci Invest Rep 2005-5078

    Google Scholar 

  • Gieskes JM, Rogers WC (1973) Alkalinity determinations in interstitial waters of marine sediments. J Sediment Petrol 43:272–277

    Google Scholar 

  • Gourcy L, Baran N, Vittecoq B (2009) Improving the knowledge of pesticide and nitrate transfer processes using age-dating tools (CFC, SF6, 3H) in a volcanic island (Martinique, French West Indies). J Contam Hydrol 108:107–117

    Article  Google Scholar 

  • Green CT, Puckett LJ, Böhlke JK, Bekin BA, Phillips SP, Kauffman LJ, Denver JM, Johnson HM (2008a) Limited occurrence of denitrification in four shallow aquifers in agricultural areas of the United States. J Environ Qual 37:994–1009

    Article  Google Scholar 

  • Green CT, Fisher LH, Bekins BA (2008b) Nitrogen fluxes through unsaturated zones in five agricultural settings across the United States. J Environ Qual 37:1073–1085

    Article  Google Scholar 

  • Greene KE, Ebbert JC, Munn MD (1996) Nutrients, suspended sediments, and pesticides in streams and irrigation systems in the Central Columbia Plateau in Washington and Idaho, 1959–1991. US Geol Surv Water Resour Invest Rep 94–4215

  • Hamilton PA, Denver JM, Phillips PJ, Shedlock RJ (1993) Water-quality assessment of the Delmarva Peninsula, Delaware, Maryland, and Virginia: effects of agricultural activities on, and the distribution of, nitrate and other inorganic constituents in the surficial aquifer. US Geol Surv Open-File Rep 93-40

    Google Scholar 

  • Hansen AJ, Vaccaro JJ, Bauer HH (1994) Ground-water flow simulation of the Columbia Plateau Regional Aquifer System, Washington, Oregon, and Idaho. US Geol Surv Water Resour Invest Rep 91-4187

    Google Scholar 

  • Happell JD, Wallace DWR, Wills KD, Wilke RJ, Neill CC (1996) A purge-and-trap capillary gas chromatographic method for the measurement of halocarbon in water and air. BNL Rep 63227, Brookhaven National Laboratory, Upton, NY

  • Hinkle SR (1995) Age of ground water in basalt aquifers near Spring Creek National Fish Hatchery, Skamania County, Washington. US Geol Surv Water Resour Invest Rep 95-4272

    Google Scholar 

  • Hooper PR (1982) The Columbia River basalts. Science 215:1463–1468

    Article  Google Scholar 

  • Hooper PR, Hawkesworth CJ (1993) Isotopic and Geochemical Constraints on the Origin and Evolution of the Columbia River Basalt. J Petrol 34:1203–1246

    Google Scholar 

  • Hosono T, Nakano T, Igeta A, Tayasu I, Tanaka T, Yachi S (2007) Impact of fertilizer on a small watershed of Lake Biwa: use of sulfur and strontium isotopes in environmental diagnosis. Sci Total Environ 384:342–354

    Article  Google Scholar 

  • Johnston CT, Cook PG, Frape SK, Plummer LN, Busenberg E, Blackport RJ (1998) Ground water age and nitrate distribution within a glacial aquifer beneath a thick unsaturated zone. Ground Water 36:171–180

    Article  Google Scholar 

  • Jones JL, Roberts LM (1998) Shallow ground-water quality beneath row crops and orchards in the Columbia Basin Irrigation Project area, Washington. US Geol Surv Water Resour Invest Rep 97:4238

    Google Scholar 

  • Jones JL, Wagner RJ (1995) Water-Quality Assessment of the Central Columbia Plateau in Washington and Idaho: analysis of available nutrient and pesticide data for ground water, 1942–92. US Geol Surv Water Resour Invest Rep 94–4258

  • Kendall C, Coplen TB (2001) Distribution of oxygen-18 and deuterium in river waters across the United States. Hydrol Process 15:1363–1393

    Article  Google Scholar 

  • Kendall C, McDonnell JJ (1998) Isotope tracers in catchment hydrology. Elsevier, New York

    Google Scholar 

  • Koh D-C, Chang H-W, Lee K-S, Ko K-S, Kim Y, Park W-B (2005) Hydrogeochemistry and environmental isotopes of ground water in Jeju volcanic island, Korea: implications for nitrate contamination. Hydrol Process 19:2225–2245

    Article  Google Scholar 

  • Koh D-C, Plummer LN, Solomon KD, Busenberg E, Kim Y-J, Chang H-W (2006) Application of environmental tracers to mixing, evolution, and nitrate contamination of ground water in Jeju Island, Korea. J Hydrol 327:258–275

    Article  Google Scholar 

  • Koh D-C, Ko K-S, Kim Y, Lee S-G, Chang H-W (2007) Effect of agricultural land use on the chemistry of groundwater from basaltic aquifers, Jeju Island, South Korea. Hydrogeol J 15:727–743

    Article  Google Scholar 

  • Larson KR, Keller CK, Larson PB, Allen-King RM (2000) Water resource implications of 18O and 2H distributions in a basalt aquifer system. Ground Water 38:947–953

    Article  Google Scholar 

  • McMahon PB, Chapelle FH (2007) Redox processes and water quality of selected principal aquifer systems. Ground Water 46:259–271

    Article  Google Scholar 

  • McMahon PB, Böhlke JK, Christenson SC (2004) Geochemistry, radiocarbon ages, and paleorecharge conditions along a transect in the central High Plains aquifer, southwestern Kansas, USA. Appl Geochem 19:1655–1686

    Article  Google Scholar 

  • Mook WG, Bommerson JC, Staverman WH (1974) Carbon isotope fractionation between dissolved bicarbonate and gaseous carbon dioxide. Earth Planet Sci Lett 22:169–176

    Article  Google Scholar 

  • Pawar NJ, Shaikh IJ (1995) Nitrate pollution of ground waters from shallow basaltic aquifers, Deccan Trap Hydrologic Province, India. Environ Geol 25:197–204

    Article  Google Scholar 

  • Plummer LN, Prestemon EC, Parkhurst DL (1994) An interactive code (NETPATH) for modeling net geochemical reactions along a flow path, version 2.0. US Geol Surv Water Resour Invest Rep 94:4169

    Google Scholar 

  • Plummer LN, Rupert MG, Busenberg E, Schlosser P (2000) Age of irrigation water in ground wate from the Eastern Snake River Plain Aquifer, south-central Idaho. Ground Water 38:264–283

    Article  Google Scholar 

  • Robertson JA, Gazis CA (2006) An oxygen isotope study of seasonal trends in soil water fluxes at two sites along a climate gradient in Washington state (USA). J Hydrol 328:375–387

    Article  Google Scholar 

  • Ryker SJ, Frans LM (2000) Summary of Nitrate Concentrations in Ground Water of Adams, Franklin, and Grant Counties, Washington, Fall 1998: a baseline for future trend analysis. US Geol Surv Water Resour Invest Rep 99-4288

    Google Scholar 

  • Singleton MJ, Maher K, DePaolo DJ, Conrad ME, Dresel EP (2006) Dissolution rates and vadose zone drainage from strontium isotope measurements of groundwater in the Pasco Basin, WA unconfined aquifer. J Hydrol 321:39–58

    Article  Google Scholar 

  • Spane FA Jr, Webber WD (1995) Hydrochemistry and hydrogeologic conditions within the Hanford Site Upper Basalt Confined Aquifer System. PNNL-10817, Pacific Northwest Laboratory, Richland, WA

  • Swanson DA, Wright TL, Zeitz I (1979) Aeromagnetic map and geologic interpretation of the west-central Columbia Plateau, Washington and adjacent Oregon. US Geol Surv Geophys Invest Map GP-917

  • Theodórsson P (1996) Measurement of weak radioactivity. World Scientific, Singapore

    Book  Google Scholar 

  • Thermal Ionization Mass Spectrometer Laboratory (2009) Procedures at Duke University. Accessible at http://www.nicholas.duke.edu/tims/methods.html. Cited 4 Aug 2009

  • Tolan TL, Reidd SP, Beeson MH, Anderson JL, Fecht KR, Swanson DA (1987) Revisions to the areal extent and volume of the Columbia River Basalt Group (abs.). Geol Soc Am Abst 19(6):458

  • Tolan T, Lindsey K, Nielson M, Loper S (2007) Geologic framework of selected sediment and Columbia River basalt units in the Columbia Basin Ground Water Management Area of Adams, Franklin, Grant, and Lincoln counties, Washington, edn. 2. Columbia Basin Groundwater Management Area, Othello, WA, 423 pp. Report accessible at http://www.cbgwma.org/

  • United States Department of Energy (1988) Consultation draft site characterization plan: Office of Civilian Radioactive Waste Management, DOE/RW-0164, vol 2, USDE, Washington, DC

  • United States Geological Survey (2008) The Reston Chlorofluorocarbon Laboratory. CFC sampling procedure, US Geological Survey, Reston, VA. Accessible at http://water.usgs.gov/lab/chlorofluorocarbons/sampling/bottles/. Cited 3 May 2009

  • United States Geological Survey (2009) National Water Information System (NWIS): Water Data for Washington. Accessible at http://waterdata.usgs.gov/wa/nwis/. Cited 5 June 2009

  • Vaccaro JJ (1999) Summary of the Columbia Plateau regional aquifer-system analysis, Washington, Oregon, and Idaho. US Geol Surv Prof Pap 1413-A

  • Vitòria L, Otero N, Soler A, Canals À (2004) Fertilizer characterization: isotopic data (N, S, O, C, and Sr). Environ Sci Technol 38:3254–3262

    Article  Google Scholar 

  • Vlassopoulos D (2009) Groundwater geochemistry in Columbia Basin Groundwater Management Area Subsurface Geologic Mapping and Hydrogeologic Assessment Project progress report. Presented at GWMA Board Meeting, January 22, 2009. CBGWA, Othello, WA. Report accessible at http://cbgwma.org. Cited December 2009

  • Washington State Department of Ecology (2008) Wells- licensing, constructing, and reporting. Washington State Department of Ecology, Olympia, WA. Accessible at http://www.ecy.wa.gov/programs/wr/wells/wellhome.html. Cited 10 Sept 2008

  • Western Regional Climate Center (2009) Othello 6 ESE, Washington (456215), average annual mean, min, and max temperature and average annual mean precipitation data, period of record 3/1/1941 to 10/31/2002. WRCC, Reno, NV. Accessible at http://www.wrcc.dri.edu/cgi-bin/cliMAIN.pl?wa6215. Cited 7 Aug 2009

  • Whiteman KJ, Vaccaro JJ, Gonthier JB, Bauer HH (1994) The hydrogeologic framework and geochemistry of the Columbia Basin Aquifer System, Washington, Oregon, and Idaho. US Geol Surv Prof Pap 1413-B

  • Widory D, Kloppmann W, Chery L, Bonnin J, Rochdi H, Guinamant J (2004) Nitrate in groundwater: an isotopic multi-tracer approach. J Contam Hydrol 72:165–188

    Article  Google Scholar 

  • Williamson AK, Munn MD, Ryker SJ, Wagner RJ, Ebbert JC, Vanderpool AM (1998) Water Quality in the Central Columbia Plateau, Washington and Idaho, 1992–95. US Geol Surv Circ 1144

Download references

Acknowledgements

The Science Foundation Arizona, University of Arizona Space Grant Program, and NSF (EAR-0635685; McIntosh) provided funding for this research. We thank R. Black and S. Embrey of the USGS, Tacoma Office, Washington, as well as C. Adkins and D. Gosch, for their tremendous help with field sampling, and the residents of central Washington for allowing access to sample their wells. We also thank T. Ferre for his input on an earlier version of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jennifer C. McIntosh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brown, K.B., McIntosh, J.C., Rademacher, L.K. et al. Impacts of agricultural irrigation recharge on groundwater quality in a basalt aquifer system (Washington, USA): a multi-tracer approach. Hydrogeol J 19, 1039–1051 (2011). https://doi.org/10.1007/s10040-011-0736-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10040-011-0736-z

Keywords

Navigation