Skip to main content
Log in

Prediction of water inflow to mechanized tunnels during tunnel-boring-machine advance using numerical simulation

Prévision des débits de venues d’eau dans les tunnels mécanisés, au cours du creusement au tunnelier, à l’aide de simulations numériques

Predicción mediante simulación numérica del flujo de agua a túneles mecanizados durante el avance de la máquina perforadora de túneles

利用数值模拟预测隧道掘进机开挖期间隧道的涌水

پیش‌بینی آب ورودی به تونل‌های مکانیزه به ازای پیشروی حفاری دستگاه TBM به روش شبیه‌سازی عددی

  • Paper
  • Published:
Hydrogeology Journal Aims and scope Submit manuscript

Abstract

An accurate estimate of the groundwater inflow to a tunnel is one of the most challenging but essential tasks in tunnel design and construction. Most of the numerical or analytical solutions that have been developed ignore tunnel seepage conditions, material properties and hydraulic-head changes along the tunnel route during the excavation process, leading to inaccurate prediction of inflow rates. A method is introduced that uses MODFLOW code of GMS software to predict inflow rate as the tunnel boring machine (TBM) gradually advances. In this method, the tunnel boundary condition is conceptualized and defined using Drain package, which is simulated by dividing the drilling process into a series of successive intervals based on the tunnel excavation rates. In addition, the drain elevations are specified as the respective tunnel elevations, and the conductance parameters are assigned to intervals, depending on the TBM type and the tunnel seepage condition. The Qomroud water conveyance tunnel, located in Lorestan province of Iran, is 36 km in length. Since the Qomroud tunnel involved groundwater inrush during excavating, it is considered as a good case study to evaluate the presented method. The groundwater inflow to this tunnel during the TBM advance is simulated using the proposed method and the predicted rates are compared with observed rates. The results show that the presented method can satisfactorily predict the inflow rates as the TBM advances.

Résumé

Une évaluation précise de l’apport d’eaux souterraines à un tunnel est. l’une des tâches les plus difficiles mais essentielles dans la conception et la construction de tunnels. La plupart des solutions numériques ou analytiques qui ont été développées ignorent les conditions d’infiltration dans le tunnel, les propriétés des matériaux et les variations de charge hydraulique le long de l’itinéraire du tunnel au cours de l’excavation, menant à la prévision imprécise des apports d’eau. On présente une méthode qui emploie le code MODFLOW du logiciel GMS pour prévoir les débits d’entrée d’eau pendant que le tunnelier (TBM) avance graduellement. Dans cette méthode, les conditions aux limites du tunnel sont conceptualisées et définies en utilisant le module Drain, qui est. simulé en divisant le processus de forage en une série d’intervalles successifs basés sur l’avancement de l’excavation de tunnel. En outre, les altitudes de drain sont indiquées comme les altitudes respectives du tunnel, et les paramètres de conductance sont assignés aux intervalles, selon le type de TBM et les conditions d’infiltration dans le tunnel. Le tunnel de transport d’eau de Qomroud, situé dans la province de Lorestan en Iran, est. de 36 km de longueur. Puisque le tunnel de Qomroud a été concerné par l’irruption d’eaux souterraines pendant l’excavation, il est. considéré comme un bon cas d’étude pour évaluer la méthode présentée. L’apport d’eaux souterraines à ce tunnel pendant l’avancement du tunnelier est. simulé en utilisant la méthode proposée et les débits prévus sont comparés aux débits observés. Les résultats prouvent que la méthode présentée peut d’une manière satisfaisante prévoir les débits des venues d’eau au cours de l’avancement du tunnelier.

Resumen

Una estimación precisa de la entrada de agua subterránea a un túnel es una de las tareas más desafiantes pero esenciales en el diseño y la construcción de un túnel. La mayoría de las soluciones numéricas o analíticas que se han desarrollado ignoran las condiciones de filtración del túnel, las propiedades del material y los cambios de la carga hidráulica a lo largo de la trayectoria del túnel durante el proceso de excavación, lo que conduce a una predicción incorrecta de las velocidades de entrada. Se introduce un método que utiliza el código MODFLOW del software GMS para predecir la velocidad de entrada a medida que avanza gradualmente la tuneladora (TBM). En este método, la condición de límite del túnel se conceptualiza y se define mediante el paquete Drenaje, que se simula dividiendo el proceso de perforación en una serie de intervalos sucesivos según las tasas de excavación del túnel. Además, las alturas del drenaje se especifican como las respectivas alturas del túnel, y los parámetros de conductancia se asignan a intervalos, según el tipo de TBM y la condición de filtración del túnel. El túnel de conducción de agua de Qomroud, ubicado en la provincia de Lorestan de Irán, tiene 36 km de longitud. Dado que el túnel de Qomroud involucró la entrada de agua subterránea durante la excavación, se considera un buen caso de estudio para evaluar el método presentado. El flujo de agua subterránea a este túnel durante el avance de TBM se simula utilizando el método propuesto y las tasas pronosticadas se comparan con las tasas observadas. Los resultados muestran que el método presentado puede predecir satisfactoriamente las tasas de entrada a medida que avanza la TBM.

摘要

隧道设计和建设中准确估算地下水流入隧道的水量是最具挑战的、但最重要的任务之一。过去开发出来的大多数数值方法或者解析方法忽略了开挖过程中隧道渗漏条件、物质特性和沿隧道路线的水头变化,导致预测水的流入量不准确。这里介绍了一种采用GMS软件MODFLOW编码预测隧道掘进机逐渐前进时水的流入量。在这种方法中,采用Drain软件包概念化和确定隧道边界条件,根据隧道掘进速度通过把钻进过程分为一系列连续的间隔对隧道边界条件进行模拟。此外,排水高程定位各自的隧道高程,电导参数分配到间隔中,这取决于隧道掘进机的类型以及隧道渗漏状况。位于伊朗Lorestan省的Qomroud输水隧道有36 km长。因为Qomroud输水隧道掘进期间出现地下水流入,所以此隧道被认为是评估提出的方法的很好的研究案例。采用该方法模拟了隧道掘进机前进期间地下水的流入隧道的水量,预测的流入量与观测的流入量进行了比较。结果显示,所展示的方法可以圆满地预测隧道掘进机前进时的水流入量。.

چکیده

تخمین دقیق آب ورودی به تونل یکی از چالش برانگیزترین وظایف لازم در مرحله طراحی و ساخت تونل به شمار می‌رود. بیش‌تر راه‌حل‌های تحلیلی و عددی که در این زمینه توسعه یافته‌اند، تغییرات شرایط نشت آب به تونل، ویژگی‌های مصالح زمین‌شناسی و بار هیدرولیکی را در طول حفاری تونل نادیده می‌گیرند که منجر به پیش‌بینی‌ نادرست نرخ‌ آب ورودی به تونل می‌شود. روشی که در این پژوهش ارائه می‌شود با استفاده از کد MODFLOW نرم‌افزار GMS نرخ آب ورودی به تونل را به طور گام به گام در هنگام پیشروی حفاری دستگاه TBM پیش‌بینی می‌نماید. در این روش، شرایط مرزی تونل با استفاده از بسته زهکش بدین صورت مفهوم‌سازی و تعریف می‌شود که در آن مسیر تونل به قسمت‌هایی پیاپی مطابق با نرخ‌ حفاری تقسیم می‌شود. علاوه‌بر آن، تراز ارتفاعی زهکش معادل با تراز ارتفاعی تونل و مقدار قابلیت هدایت برای هر قسمت با توجه به نوع دستگاه TBM و شرایط نشت آب به تونل، تعیین می‌شود. تونل انتقال آب قمرود به طول 36 کیلومتر در استان لرستان کشور ایران واقع شده است. با توجه به این که تونل قمرود در هنگام حفاری با مشکلات هجوم آب گریبان‌گیر بوده است، از اینرو به عنوان مطالعه موردی مناسب برای این پژوهش در نظر گرفته شده است. بدین ترتیب نخست آب ورودی به تونل قمرود به ازای پیشروی حفاری دستگاه TBM با استفاده از روش پیشنهادی در این پژوهش برآورد شده و در نهایت مقادیر برآوردی با مشاهداتی مورد مقایسه قرار گرفته است. نتایج نشان می‌دهد که روش ارائه شده می‌تواند به طور رضایت‌بخشی نرخ آب ورودی به تونل را به ازای پیشروی حفاری دستگاه TBM پیش‌بینی نماید.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30

Similar content being viewed by others

References

  • Alavi M (1994) Tectonics of the Zagros orogenic belt of Iran: new data and interpretations. Tectonophysics 229:211–238. https://doi.org/10.1016/0040-1951(94)90030-2

    Article  Google Scholar 

  • Albertson PE, Hennington GW (1996) Groundwater analysis using a geographic information system following finite-difference and element techniques. Eng Geol 42:167–173. https://doi.org/10.1016/0013-7952(95)00076-3

    Article  Google Scholar 

  • Anagnostou G (1995) The influence of tunnel excavation on the hydraulic head. Int J Numer Anal Methods Geomech 19:725–746. https://doi.org/10.1002/nag.1610191005

    Article  Google Scholar 

  • Anderson M, Woessner WW (1992) Applied groundwater modeling. Academic, San Diego, CA

  • Anderson MP, Woessner WW, Hunt RJ (2015) Applied groundwater modeling: simulation of flow and advective transport. Academic, San Diego, CA

  • Banks D, Solbjørg ML, Rohr-Torp E (1992) Permeability of fracture zones in a Precambrian granite. Q J Eng Geol Hydrogeol 25:377–388. https://doi.org/10.1144/GSL.QJEG.1992.025.04.12

    Article  Google Scholar 

  • Butscher C (2012) Steady-state groundwater inflow into a circular tunnel. Tunn Undergr Sp Technol 32:158–167. https://doi.org/10.1016/j.tust.2012.06.007

    Article  Google Scholar 

  • Celestino TB, Giambastiani M, Bortolucci AA (2001) Water inflows in tunnels: back-analysis and role of different lining systems. In: Proceedings of the World Tunnel Congress, Milan, Italy, June 2001, pp 547–554

  • Cesano D, Olofsson B, Agtzoglou AC (2000) Parameters regulating groundwater inflows into hard rock tunnels: a statistical study of the Bolmen tunnel in southern Sweden. Groundw Stud Parameters 7798:153–165. https://doi.org/10.1016/S0886-7798(00)00043-2

    Article  Google Scholar 

  • Chiu Y-C, Chia Y (2012) The impact of groundwater discharge to the Hsueh-Shan tunnel on the water resources in northern Taiwan. Hydrogeol J 20:1599–1611. https://doi.org/10.1007/s10040-012-0895-6

    Article  Google Scholar 

  • Coli N, Pranzini G, Alfi A, Boerio V (2008) Evaluation of rock-mass permeability tensor and prediction of tunnel inflows by means of geostructural surveys and finite element seepage analysis. Eng Geol 101:174–184. https://doi.org/10.1016/j.enggeo.2008.05.002

    Article  Google Scholar 

  • Dassargues A (1997) Groundwater modelling to predict the impact of tunnel on the behavior of water table aquiefer in urban condition. In: Groundwater in the urban environment: processes and management. Balkema, Rotterdam, The Netherlands, pp 225–230

  • Doherty J (2007) PEST: model-independent parameter estimation user manual. Watermark, Brisbane, Australia

    Google Scholar 

  • El Tani M (2003) Circular tunnel in a semi-infinite aquifer. Tunn Undergr Sp Technol 18:49–55. https://doi.org/10.1016/S0886-7798(02)00102-5

    Article  Google Scholar 

  • Environmental Modeling Research Laboratory (2005) GMS 5.0 Tutorials. EMRL, Brigham Young University, Provo, UT

  • Faille I, Fumagalli A, Jaffré J, Roberts JE (2015) Reduced models for flow in porous media containing faults with discretization using hybrid finite volume schemes. IFP Energies Nouv, CCSD, Guérin, France, 30 pp. https://doi.org/10.1007/s10596-016-9558-3

    Article  Google Scholar 

  • Farhadian H, Katibeh H, Huggenberger P (2016) Empirical model for estimating groundwater flow into tunnel in discontinuous rock masses. Environ Earth Sci. https://doi.org/10.1007/s12665-016-5332-z

  • Font-Capó J, Vázquez-Suñé E, Carrera J, Marti D, Carbonell R, Perez-Estaun A (2011) Groundwater inflow prediction in urban tunneling with a tunnel boring machine (TBM). Eng Geol 121:46–54. https://doi.org/10.1016/j.enggeo.2011.04.012

    Article  Google Scholar 

  • Ghasemi A, Talbot CJ (2006) A new tectonic scenario for the Sanandaj-Sirjan zone (Iran). J Asian Earth Sci 26:683–693. https://doi.org/10.1016/j.jseaes.2005.01.003

    Article  Google Scholar 

  • Gupta RP, Singhal BBS (1999) Applied hydrogeology of fractured rocks. Kluwer, Dordrecht

    Google Scholar 

  • Harbaugh AW (2005) MODFLOW-2005, the US Geological Survey Modular Ground-water Model: the ground-water flow process. US Geological Survey, Reston, VA

  • Harbaugh AW, McDonald MG (1996) Programmer’s documentation for MODFLOW-96, an update to the US Geological Survey modular finite-difference ground-water flow model. US Geological Survey, Reston, VA

  • Harbaugh AW, Banta ER, Hill MC, McDonald MG (2000) MODFLOW-2000, The U.S. Geological Survey Modular Ground-Water Model: user guide to modularization concepts and the ground-water flow process. Open-File Report U S Geol Surv 134

  • Hwang J-H, Lu C-C (2007) A semi-analytical method for analyzing the tunnel water inflow. Tunn Undergr Sp Technol 22:39–46. https://doi.org/10.1016/j.tust.2006.03.003

    Article  Google Scholar 

  • ITA WG 14 (2001) Recommendations and guideline for tunnel boring machines (TBMs). ITA Rep 14:1–119

    Google Scholar 

  • ITRC (2017) Characterization and remediation of fractured rock. Interstate Technology and Regulatory Council, Washington, DC

  • Kolm KE (1996) Conceptualization and characterization of ground-water systems using geographic information systems. In: Remote sensing and GIS for site characterization: applications and standards. ASTM, West Conshohocken, PA

  • Kolymbas D, Wagner P (2007) Groundwater ingress to tunnels: the exact analytical solution. Tunn Undergr Sp Technol 22:23–27

    Article  Google Scholar 

  • Kresic N, Mikszewski A (2012) Hydrogeological conceptual site models: data analysis and visualization. CRC, Boca Raton, FL

  • Lai J, Qiu J, Fan H, Chen J, Hu Z, Zhang Q, Wang J (2017) Structural safety assessment of existing multiarch tunnel: a case study. Adv Materials Sci Eng J. https://doi.org/10.1155/2017/1697041

    Article  Google Scholar 

  • Lee C-H, Chen W-P, Lee R-H (2006) Estimation of groundwater recharge using water balance coupled with base-flow-record estimation and stable-base-flow analysis. Environ Geol 51:73–82. https://doi.org/10.1007/s00254-006-0305-2

    Article  Google Scholar 

  • Lei S (1999) An analytical solution for steady flow into a tunnel. Ground Water 37:23–26. https://doi.org/10.1111/j.1745-6584.1999.tb00953.x

    Article  Google Scholar 

  • Li D, Li X, Li CC, Huang B, Gong F, Zhang W (2009) Case studies of groundwater flow into tunnels and an innovative water-gathering system for water drainage. Tunn Undergr Sp Technol 24:260–268. https://doi.org/10.1016/j.tust.2008.08.006

    Article  Google Scholar 

  • Li L, Lei T, Li S, Zhang Q, Xu Z, Shi S, Zhou Z (2015) Risk assessment of water inrush in karst tunnels and software development. Arab J Geosci 8:1843–1854. https://doi.org/10.1007/s12517-014-1365-3

    Article  Google Scholar 

  • Lohman SW (1970) Definitions of selected ground-water terms: revisions and conceptual refinements. Citeseer. citeseerx.ist.psu.edu. Accessed July 2018

  • Maréchal JC, Lanini S, Aunay B, Perrochet P (2014) Analytical solution for modeling discharge into a tunnel drilled in a heterogeneous unconfined aquifer. Groundwater 52:597–605. https://doi.org/10.1111/gwat.12087

    Article  Google Scholar 

  • McDonald MG, Harbaugh AW (1988) A modular three-dimensional finite-difference ground-water flow model. US Geological Survey, Reston, VA

  • Mohajjel M, Fergusson CL (2000) Dextral transpression in Late Cretaceous continental collision, Sanandaj Sirjan zone, western Iran. J Struct Geol 22:1125–1139. https://doi.org/10.1016/S0191-8141(00)00023-7

    Article  Google Scholar 

  • Molinero J, Samper J, Juanes R (2002) Numerical modeling of the transient hydrogeological response produced by tunnel construction in fractured bedrocks. Eng Geol 64:369–386. https://doi.org/10.1016/S0013-7952(01)00099-0

    Article  Google Scholar 

  • Perrochet P (2005) Confined flow into a tunnel during progressive drilling: An analytical solution. Ground Water 43:943–946. https://doi.org/10.1111/j.1745-6584.2005.00108.x

    Article  Google Scholar 

  • Perrochet P, Dematteis A (2007) Modeling transient discharge into a tunnel drilled in a heterogeneous formation. Ground Water 45:786–790. https://doi.org/10.1111/j.1745-6584.2007.00355.x

    Article  Google Scholar 

  • Preisig G, Dematteis A, Torri R, Monin N, Milnes E, Perrochet P (2014) Modelling discharge rates and ground settlement induced by tunnel excavation. Rock Mech Rock Eng 47:869–884. https://doi.org/10.1007/s00603-012-0357-4

    Article  Google Scholar 

  • Qiu S, Liang X, Xiao C, Huang H, Fang Z, Lv F (2015) Numerical simulation of groundwater flow in a river valley basin in Jilin urban area, China. Water 7:5768–5787. https://doi.org/10.3390/w7105768

    Article  Google Scholar 

  • Refsgaard JC, Henriksen HJ (2004) Modelling guidelines: terminology and guiding principles. Adv Water Resour 27:71–82. https://doi.org/10.1016/j.advwaters.2003.08.006

    Article  Google Scholar 

  • Schwartz FW, Andrews CB, Freyberg DL, Kincaid CT, Konikow LF, McKee CR, McLaughlin DB, Mercer JW, Quinn EJ, Rao PSC, Rittmann BE, Runnells DD, Van der Heijde PKM, Walsh WJ (1990) Ground water models scientific and regulatory applications. National Academy Press, Washington, DC

    Google Scholar 

  • Shapiro AM (1987) Transport equations for fractured porous media. In: Advances in transport phenomena in porous media. Springer, Heidelberg, Germany, pp 405–471. https://doi.org/10.1007/978-94-009-3625-6

    Google Scholar 

  • US Army Corps of Engineers (1999) Engineering and design groundwater hydrology (engineer manual 1110-2-1421). US Army Corps of Engineers, Washington, DC, pp 20314–21000

    Google Scholar 

  • USGS (2007) USGS. SRTM Topographic Data. Available online: http://srtm.usgs.gov/

  • Wels C, Mackie D, Scibek J (2012) Guidelines for groundwater modeling to assess impacts of proposed natural resource development activities. Report no. 194001, British Columbia, Ministry of Environment, Water Protection and Sustainability Branch, Victoria, BC, 385 pp

  • Wittke W, Erichsen C, Gattermann J (2006) Stability analysis and design for mechanized tunnelling. Geotechnical Engineering in Research and PracticeWBI-PRINT 6, WBI, Aachen, Germany

  • Xia Q, Xu M, Zhang H, Zhang Q, Xiao X (2017) A dynamic modeling approach to simulate groundwater discharges into a tunnel from typical heterogenous geological media during continuing excavation. KSCE J Civ Eng 0:1–10. https://doi.org/10.1007/s12205-017-0668-9

    Article  Google Scholar 

  • Yang S-Y, Yeh H-D (2007) A closed-form solution for a confined flow into a tunnel during progressive drilling in a multi-layer groundwater flow system. Geophys Res Lett. https://doi.org/10.1029/2007GL029285

  • Yang FR, Lee CH, Kung WJ, Yeh HF (2009) The impact of tunneling construction on the hydrogeological environment of “Tseng-Wen Reservoir Transbasin Diversion Project” in Taiwan. Eng Geol 103:39–58. https://doi.org/10.1016/j.enggeo.2008.07.012

    Article  Google Scholar 

  • Yoo C, Asce AM (2005) Interaction between tunneling and groundwater: numerical investigation using three dimensional stress–pore pressure coupled analysis. J Geotech Geoenviron Eng 131(2):240–250. https://doi.org/10.1061/(ASCE)1090-0241(2005)131:2(240)CE

    Article  Google Scholar 

  • Zhang E, Jaramillo CA, Feldsher TB (2007) Transient simulation of groundwater flow for tunnel construction using time-variable boundary condition. In: Fall Meeting Google Scholar, American Geophysical Union, Washington, DC, 6 pp

  • Zhang X, Sanderson DJ, Barker AJ (2002) Numerical study of fluid flow of deforming fractured rocks using dual permeability model. Geophys J Int 151:452–468. https://doi.org/10.1046/j.1365-246X.2002.01765.x

    Article  Google Scholar 

Download references

Acknowledgements

This work is based on the results from the master’s thesis titled “Interaction between tunneling and groundwater: case study—the Qomroud tunnel” guided by Assist. Prof. Mohammad Nakhaei and Prof. Hossein Sedghi, and written at the Science and Research University of Tehran. The authors thank the Peymab Consultant Engineering Co., the Mahab Ghodss Consultant Engineering Co., and the Iran Water and Power Resources Development Co. for offering data for this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohsen Golian.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Golian, M., Teshnizi, E.S. & Nakhaei, M. Prediction of water inflow to mechanized tunnels during tunnel-boring-machine advance using numerical simulation. Hydrogeol J 26, 2827–2851 (2018). https://doi.org/10.1007/s10040-018-1835-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10040-018-1835-x

Keywords

Navigation