Skip to main content
Log in

Hepatic lipid composition differs between ob/ob and ob/+ control mice as determined by using in vivo localized proton magnetic resonance spectroscopy

  • Research Article
  • Published:
Magnetic Resonance Materials in Physics, Biology and Medicine Aims and scope Submit manuscript

Abstract

Object

Hepatic lipid accumulation is associated with nonalcoholic fatty liver disease, and the metabolic syndrome constitutes an increasing medical problem. In vivo proton magnetic resonance spectroscopy (1H MRS) allows the assessment of hepatic lipid levels noninvasively and also yields information on the fat composition due to its high spectral resolution.

Materials and methods

We applied 1H MRS at 9.4T to study lipid content and composition in eight leptin-deficient ob/ob mice as a model of obesity and in four lean ob/+ control mice at 24 weeks of age. PRESS sequence was used. For accurate estimation of signal intensity, differences in relaxation behavior of individual signals were accounted for each mouse individually. Also, in order to minimize spectral degrading due to motion artifacts, respiration gating was applied.

Results

Significant differences between ob/ob and ob/+ control mice were found in both lipid content and composition. The mean chain length was found to be significantly longer in ob/ob mice with a higher fraction of monounsaturated lipids.

Conclusion

1H MRS enables accurate assessment in hepatic lipids in mice, which is attractive for mechanistic studies of altered metabolism given the large number of genetically engineered mouse models available.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

CRLB:

The Cramer–Rao lower bound

fMUL:

Fraction of monounsaturated lipids

FOV:

Field-of-view

fPUL:

Fraction of polyunsaturated lipids

fSL:

Fraction of saturated lipids

fUL:

Fraction of unsaturated lipids

fLM:

Fractional lipid mass

MCL:

Mean chain length

NA:

Number of averages

ob/ob:

Lepob/Lepob

ob/+:

Lepob/+

SL:

Saturated lipid component

TG:

Triglyceride

ULtotal :

Total unsaturated lipid component

References

  1. Krssak M, Roden M (2004) The role of lipid accumulation in liver and muscle for insulin resistance and type 2 diabetes mellitus in humans. Rev Endocr Metab Disord 5:127–134

    Article  PubMed  CAS  Google Scholar 

  2. Kovacs P, Stumvoll M (2005) Fatty acids and insulin resistance in muscle and liver. Best Pract Res Clin Endocrinol Metab 19:625–635

    Article  PubMed  CAS  Google Scholar 

  3. Anstee QM, Goldin RD (2006) Mouse models in non-alcoholic fatty liver disease and steatohepatitis research. Int J Exp Pathol 87:1–16

    Article  PubMed  CAS  Google Scholar 

  4. Craske JD (1993) Separation of instrumental and chemical errors in the analysis of oils by gas-chromatography—a collaborative evaluation. J Am Oil Chem Soc 70:325–334

    Article  CAS  Google Scholar 

  5. Deman JM (1964) Determination of fatty acid composition of milk fat by dual column temperature programmed gas-liquid chromatography. J Dairy Sci 47:546–547

    Article  CAS  Google Scholar 

  6. Lindon JC, Holmes E, Nicholson JK (2006) Metabonomics techniques and applications to pharmaceutical research and development. Pharm Res 23:1075–1088

    Article  PubMed  CAS  Google Scholar 

  7. Zancanaro C, Nano R, Marchioro C et al (1994) Magnetic resonance spectroscopy investigations of brown adipose tissue and isolated brown adipocytes. J Lipid Res 35:2191–2199

    PubMed  CAS  Google Scholar 

  8. Knothe G, Kenar JA (2004) Determination of the fatty acid profile by H-1-NMR spectroscopy. Eur J Lipid Sci Tech 106:88–96

    Article  CAS  Google Scholar 

  9. Miyake Y, Yokomizo K, Matsuzaki N (1998) Determination of unsaturated fatty acid composition by high-resolution nuclear magnetic resonance spectroscopy. J Am Oil Chem Soc 75:1091–1094

    CAS  Google Scholar 

  10. Yeung DKW, Lam SL, Griffith JF et al (2008) Analysis of bone marrow fatty acid composition using high-resolution proton NMR spectroscopy. Chem Phys Lipids 151:103–109

    Article  PubMed  CAS  Google Scholar 

  11. Guillen MD, Ruiz A (2003) H-1 nuclear magnetic resonance as a fast tool for determining the composition of acyl chains in acylglycerol mixtures. Eur J Lipid Sci Tech 105:502–507

    Article  CAS  Google Scholar 

  12. Ruberg FL, Viereck J, Phinikaridou A et al (2006) Identification of cholesteryl esters in human carotid atherosclerosis by ex vivo image-guided proton MRS. J Lipid Res 47:310–317

    Article  PubMed  CAS  Google Scholar 

  13. Ren JM, Dimitrov I, Sherry AD et al (2008) Composition of adipose tissue and marrow fat in humans by H-1 NMR at 7 Tesla. J Lipid Res 49:2055–2062

    Article  PubMed  CAS  Google Scholar 

  14. Hwang JH, Bluml S, Leaf A et al (2003) In vivo characterization of fatty acids in human adipose tissue using natural abundance H-1 clecoupled C-13 MRS at 1.5 T: clinical applications to dietary therapy. NMR Biomed 16:160–167

    Article  PubMed  CAS  Google Scholar 

  15. Lunati E, Farace P, Nicolato E et al (2001) Polyunsaturated fatty acids mapping by (1)H MR-chemical shift imaging. Magn Reson Med 46:879–883

    Article  PubMed  CAS  Google Scholar 

  16. Walling BE, Munasinghe J, Berrigan D et al (2007) Intra-abdominal fat burden discriminated in vivo using proton magnetic resonance spectroscopy. Obesity (Silver Spring) 15:69–77

    Article  Google Scholar 

  17. Lunati E, Marzola P, Nicolato E et al (1999) In vivo quantitative lipidic map of brown adipose tissue by chemical shift imaging at 4.7 tesla. J Lipid Res 40:1395–1400

    PubMed  CAS  Google Scholar 

  18. Strobel K, van den Hoff J, Pietzsch J (2008) Localized proton magnetic resonance spectroscopy of lipids in adipose tissue at high spatial resolution in mice in vivo. J Lipid Res 49:473–480

    Article  PubMed  CAS  Google Scholar 

  19. Lundbom J, Hakkarainen A, Soderlund S et al (2011) Long-TE (1)H MRS suggests that liver fat is more saturated than subcutaneous and visceral fat. NMR Biomed 24:238–245

    Article  PubMed  Google Scholar 

  20. Bollard ME, Garrod S, Holmes E et al (2000) High-resolution (1)H and (1)H–(13)C magic angle spinning NMR spectroscopy of rat liver. Magn Reson Med 44:201–207

    Article  PubMed  CAS  Google Scholar 

  21. Corbin IR, Furth EE, Pickup S et al (2009) In vivo assessment of hepatic triglycerides in murine non-alcoholic fatty liver disease using magnetic resonance spectroscopy. Bba-Mol Cell Biol L 1791:757–763

    Article  CAS  Google Scholar 

  22. Calderan L, Marzola P, Nicolato E et al (2006) In vivo phenotyping of the ob/ob mouse by magnetic resonance imaging and 1H-magnetic resonance spectroscopy. Obesity (Silver Spring) 14:405–414

    Article  CAS  Google Scholar 

  23. Griffitts J, Tesiram Y, Reid GE et al (2009) In vivo MRS assessment of altered fatty acyl unsaturation in liver tumor formation of a TGF alpha/c-myc transgenic mouse model. J Lipid Res 50:611–622

    Article  PubMed  CAS  Google Scholar 

  24. Garbow JR, Lin X, Sakata N et al (2004) In vivo MRS measurement of liver lipid levels in mice. J Lipid Res 45:1364–1371

    Article  PubMed  CAS  Google Scholar 

  25. Dimitrov IE, Douglas D, Ren J et al (2011) In vivo determination of human breast fat composition by (1) H magnetic resonance spectroscopy at 7 T. Magn Reson Med 67:20–26

    Article  PubMed  Google Scholar 

  26. Mosconi E, Fontanella M, Sima DM et al (2011) Investigation of adipose tissues in Zucker rats using in vivo and ex vivo magnetic resonance spectroscopy. J Lipid Res 52:330–336

    Article  PubMed  CAS  Google Scholar 

  27. Lindstrom P (2007) The physiology of obese-hyperglycemic mice [ob/ob mice]. Sci World J 7:666–685

    Article  Google Scholar 

  28. Menahan LA (1983) Age-related changes in lipid and carbohydrate metabolism of the genetically obese mouse. Metabolism 32:172–178

    Article  PubMed  CAS  Google Scholar 

  29. Cheng Y, Zhang J, Shang J et al (2009) Prevention of free fatty acid-induced hepatic lipotoxicity in HepG2 cells by magnesium isoglycyrrhizinate in vitro. Pharmacology 84:183–190

    Article  PubMed  CAS  Google Scholar 

  30. Duncan JG (2008) Lipotoxicity: what is the fate of fatty acids? J Lipid Res 49:1375–1376

    Article  PubMed  CAS  Google Scholar 

  31. Choo HJ, Kim JH, Kwon OB et al (2006) Mitochondria are impaired in the adipocytes of type 2 diabetic mice. Diabetologia 49:784–791

    Article  PubMed  CAS  Google Scholar 

  32. Chance DS, Mcintosh MK (1994) Rates of beta-oxidation of fatty-acids of various chain lengths and degrees of unsaturation in highly purified peroxisomes isolated from rat-liver. Comp Biochem Phys B 109:273–280

    Article  CAS  Google Scholar 

  33. Shimano H, Matsuzaka T, Yahagi N et al (2007) Crucial role of a long-chain fatty acid elongase, Elovl6, in obesity-induced insulin resistance. Nat Med 13:1193–1202

    Article  PubMed  Google Scholar 

  34. de Graaf RA, Brown PB, McIntyre S et al (2006) High magnetic field water and metabolite proton T-1 and T-2 relaxation in rat brain in vivo. Magn Reson Med 56:386–394

    Article  PubMed  Google Scholar 

  35. Delikatny EJ, Chawla S, Leung DJ et al (2011) MR-visible lipids and the tumor microenvironment. NMR Biomed 24:592–611

    PubMed  CAS  Google Scholar 

  36. Giarola M, Rossi B, Mosconi E et al (2011) Fast and minimally invasive determination of the unsaturation index of white fat depots by micro-raman spectroscopy. Lipids 46:659–667

    Article  PubMed  CAS  Google Scholar 

  37. Machann J, Thamer C, Schnoedt B et al (2006) Hepatic lipid accumulation in healthy subjects: a comparative study using spectral fat-selective MRI and volume-localized H-1-MR spectroscopy. Magn Reson Med 55:913–917

    Article  PubMed  CAS  Google Scholar 

  38. Johnson NA, Walton DW, Sachinwalla T et al (2008) Noninvasive assessment of hepatic lipid composition: advancing understanding and management of fatty liver disorders. Hepatology 47:1513–1523

    Article  PubMed  CAS  Google Scholar 

  39. Yki-Jarvinen H (2005) Fat in the liver and insulin resistance. Ann Med 37:347–356

    Article  PubMed  Google Scholar 

  40. Li X, Grundy SM, Patel SB (1997) Obesity in db and ob animals leads to impaired hepatic very low density lipoprotein secretion and differential secretion of apolipoprotein B-48 and B-100. J Lipid Res 38:1277–1288

    PubMed  CAS  Google Scholar 

  41. Dong Z, Dreher W, Leibfritz D et al (2009) Challenges of using MR spectroscopy to detect neural progenitor cells in vivo. Am J Neuroradiol 30:1096–1101

    Article  PubMed  CAS  Google Scholar 

  42. Yahya A, Fallone BG (2010) T(2) determination of the J-coupled methyl protons of lipids: in vivo illustration with tibial bone marrow at 3 T. J Magn Reson Imaging 31:1514–1521

    Article  PubMed  Google Scholar 

  43. Yahya A, Tessier AG, Fallone BG (2011) Effect of J-coupling on lipid composition determination with localized proton magnetic resonance spectroscopy at 9.4 T. J Magn Reson Imaging 34:1388–1396

    Article  PubMed  Google Scholar 

  44. Ye Q, Danzer CF, Fuchs A et al (2011) Longitudinal evaluation of intramyocellular lipids (IMCLs) in tibialis anterior muscle of ob/ob and ob/+ control mice using a cryogenic surface coil at 9.4 T. NMR Biomed 24:1295–1301

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge funding by the Swiss National Science Foundation and SystemsX.ch. We also thank René Tschaggelar and Nikola Cesarovic for excellent technical assistance during various aspects of this study. We especially thank Prof. Peter Boesiger for providing kind access to LCModel and Dr. Anke Henning for advice.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Markus Rudin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ye, Q., Danzer, C.F., Fuchs, A. et al. Hepatic lipid composition differs between ob/ob and ob/+ control mice as determined by using in vivo localized proton magnetic resonance spectroscopy. Magn Reson Mater Phy 25, 381–389 (2012). https://doi.org/10.1007/s10334-012-0310-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10334-012-0310-2

Keywords

Navigation