Skip to main content
Log in

Identification of biological neurons using adaptive observers

  • Research Report
  • Published:
Cognitive Processing Aims and scope Submit manuscript

Abstract

This paper is to investigate the use of adaptive observers for the modeling of biological neurons and networks. Assuming that a neuron can be modeled as a continuous-time nonlinear system, it is possible to determine its unknown parameters using adaptive observer, based on the concept of adaptive synchronization. The same technique can be extended for the identification of an entire biological neural network. Some conventional observer designs are studied in this paper and satisfactory results are obtained, yet with some restrictions. To further extend the applicability of adaptive observers for the modeling process, a new design is suggested. It is based on a combination of linear feedback control approach and the dynamical minimization algorithm. The effectiveness of the designed adaptive observer is confirmed with simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

References

  • Bastin G, Gevers MR (1988) Stable adaptive observers for nonlinear time-varying systems. IEEE Trans Automat Contr 33(7):650–658

    Article  Google Scholar 

  • Delyon B, Zhang Q (2001) A new approach to adaptive observer design for mimo systems. American Automatic Control (Arlington 2001)

  • Ding X, Frank P (1993) An adaptive observer-based fault detection scheme for nonlinear dynamic systems. In: Proceedings of the 12th IFAC world congress, Sydney, vol 8, pp 307–310, 18.7–23.7

  • Hindmarsh JL, Rose RM (1984) A model of neuronal bursting using three coupled first order differential equations. Proc R Soc Lond B 221(87):87–102

    Article  PubMed  CAS  Google Scholar 

  • Hodgkin AL, Huxley AF (1954) A quantitative description of membrane current and application to conduction and excitation in nerve. J Physiol 117:500–544

    Google Scholar 

  • Izhikevich EM (2003) Simple model of spiking neurons. IEEE Trans Neural Netw 14(6):1569–1572

    Article  PubMed  CAS  Google Scholar 

  • Izhikevich EM (2004) Which model to use for cortical spiking neurons? IEEE Trans Neural Netw 15(5):1063–1070

    Article  PubMed  Google Scholar 

  • Jiang B, Staroswiecki M, Cocquempot V (2004) Fault diagnosis based on adaptive observer for a class of non-linear systems with unknown parameters. Int J Control 77(4):415–426

    Article  Google Scholar 

  • Liu Y, Tang W, Kocarev L (2008) An Adaptive Observer Design for Auto-synchronization of Lorenz System. Int J Bifurcat Chaos 18(8) (in press)

  • Mao Y, Tang W, Kocarev L (2007) An adaptive observer design for biological neural network identification. In: Proceedings of international symposium on nonlinear theory and its applications (NOLTA2007), Vancouver, Canada, September 2007, pp 421–424

  • Marino R (1990) Adaptive observers for single output nonlinear systems. IEEE Trans Automat Contr 35(9):1054–1058

    Article  Google Scholar 

  • Marino R, Tomei P (1992) Global adaptive observers for nonlinear systems via filtered transformations. IEEE Trans Automat Contr 37(8):1239–1245

    Article  Google Scholar 

  • Marino R, Tomei P (1995) Adaptive observers with arbitrary exponential rate of convergence for nonlinear systems. IEEE Trans Automat Contr 40(7):1300–1304. doi:10.1109/9.400471

    Article  Google Scholar 

  • Maybhate A, Amritkar RE (1999) Use of synchronization and adaptive control in parameter estimation from a time series. Phys Rev E 59:284–293

    Article  CAS  Google Scholar 

  • Maybhate A, Amritkar RE (2000) Dynamic algorithm for parameter estimation and its applications. Phys Rev E 61:6461–6470

    Article  CAS  Google Scholar 

  • Pecora LM, Carroll TL (1990) Synchronization in chaotic systems. Phys Rev Lett 64:821–824

    Article  PubMed  Google Scholar 

  • Pecora LM, Carroll TL (1991) Driving systems with chaotic signals. Phys Rev A 44:2374–2383

    Google Scholar 

  • Wang XJ (1993) Genesis of bursting oscillations in the Hindmarsh-Rose model and homoclinicity to a chaotic saddle. Physica D 62(1–4):263–274

    Article  Google Scholar 

  • Zhang Q (2000) A new residual generation and evaluation method for detection and isolation of faults in non-linear systems. Int J Adapt Control Signal Process 14(7):759–773

    Article  Google Scholar 

  • Zhang Q (2005) Revisiting different adaptive observers through a unified formulation. In: 44th IEEE conference on decision and control and European control conference, Seville, Spain, 12–15 December 2005, pp 3067–3072

  • Zhou CS, Lai CH (2000) Analysis of spurious synchronization with positive conditional Lyapunov exponents in computer simulations. Physica D 135(1–2):1–23

    Article  Google Scholar 

Download references

Acknowledgments

The work described in this paper was fully supported by a grant from the Research Grants Council of the Hong Kong Special Administrative Region, China (CityU 120407).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ljupco Kocarev.

Appendix

Appendix

$$ \begin{gathered} \dot{\hat{x}}_{1} (t) = a\,\hat{x}_{1}^{2} - \hat{x}_{1}^{3} - r_{1} \,\hat{y}_{1} - r_{6} \,\hat{z}_{1} - \sum\limits_{j = 1}^{5} {g\,\hat{c}_{1j} \,\sigma_{{V_{\rm s} }} \,(\hat{x}_{1} )\,r_{{v,\theta_{\rm s} }} (\hat{x}_{j} )} + K_{1} (x_{1} - \hat{x}_{1} ) \hfill \\ \dot{\hat{y}}_{1} (t) = b\,\hat{x}_{1}^{2} - f\,\hat{y}_{1} \hfill \\ \dot{\hat{z}}_{1} (t) = c\,\hat{x}_{1} - d\,\hat{z}_{1} + e \hfill \\ \dot{\hat{x}}_{2} (t) = a\,\hat{x}_{2}^{2} - \hat{x}_{2}^{3} - l\hat{y}_{2} - r_{2} \hat{z}_{2} - \sum\limits_{j = 1}^{5} {g\,\hat{c}_{2j} \,\sigma_{{V_{\rm s} }} \,(\hat{x}_{2} )\,r_{{v,\theta_{\rm s} }} \,(\hat{x}_{j} )} + K_{2} (x_{2} - \hat{x}_{2} ) \hfill \\ \dot{\hat{y}}_{2} (t) = b\,\hat{x}_{2}^{2} - r_{7} \,\hat{y}_{2} \hfill \\ \dot{\hat{z}}_{2} (t) = c\,\hat{x}_{2} - d\,\hat{z}_{2} + e \hfill \\ \dot{\hat{x}}_{3} (t) = a\,\hat{x}_{3}^{2} - \hat{x}_{3}^{3} - l\,\hat{y}_{3} - h\,\hat{z}_{3} - \sum\limits_{j = 1}^{5} {g\,\hat{c}_{3j} \,\sigma_{{V_{\rm s} }} \,(\hat{x}_{3} )\,r_{{v,\theta_{\rm s} }} (\hat{x}_{j} )} + K_{3} (x_{3} - \hat{x}_{3} ) \hfill \\ \dot{\hat{y}}_{3} (t) = b\,\hat{x}_{3}^{2} - r_{3} \,\hat{y}_{3} \hfill \\ \dot{\hat{z}}_{3} (t) = r_{8} \,\hat{x}_{3} - d\,\hat{z}_{3} + e \hfill \\ \dot{\hat{x}}_{4} (t) = a\,\hat{x}_{4}^{2} - \hat{x}_{4}^{3} - l\hat{y}_{4} - h\,\hat{z}_{4} - \sum\limits_{j = 1}^{5} {g\,\hat{c}_{4j} \,\sigma_{{V_{\rm s} }} \,(x_{4} )\,r_{{v,\theta_{\rm s} }} (x_{j} )} + K_{4} (x_{4} - \hat{x}_{4} ) \hfill \\ \dot{\hat{y}}_{4} (t) = b\,\hat{x}_{4}^{2} - r_{9} \,\hat{y}_{4} \hfill \\ \dot{\hat{z}}_{4} (t) = c\,\hat{x}_{4} - r_{4} \,\hat{z}_{4} + e \hfill \\ \dot{\hat{x}}_{5} (t) = a\,\hat{x}_{5}^{2} - \hat{x}_{5}^{3} - r_{10} \,\hat{y}_{5} - h\,\hat{z}_{5} - \sum\limits_{j = 1}^{5} {g\,\hat{c}_{5j} \,\sigma_{{V_{\rm s} }} (x_{5} )\,r_{{v,\theta_{\rm s} }} (x_{j} )} + K_{5} (x_{5} - \hat{x}_{5} ) \hfill \\ \dot{\hat{y}}_{5} (t) = b\,\hat{x}_{5}^{2} - f\,\hat{y}_{5} \hfill \\ \dot{\hat{z}}_{5} (t) = r_{5} \,\hat{x}_{5} - d\,\hat{z}_{5} + e \hfill \\ \end{gathered} $$
$$ \dot{\hat{c}}_{ij} = - k_{ij} \,g\,\sigma_{{V_{\rm s} }} (\hat{x}_{i} )\,r_{{v,\theta_{\rm s} }} (\hat{x}_{j} )\,(x_{i} - \hat{x}_{i} ) $$
$$ \begin{array}{*{20}c} \begin{gathered} \dot{r}_{1} = - \delta_{1} \hat{y}_{1} (x_{1} - \hat{x}_{1} ) \hfill \\ \dot{r}_{2} = - \delta_{2} \hat{z}_{2} (x_{2} - \hat{x}_{2} ) \hfill \\ \dot{r}_{3} = \delta_{3} \hat{y}_{3} (x_{3} - \hat{x}_{3} ) \hfill \\ \dot{r}_{4} = \delta_{4} \hat{z}_{4} (x_{4} - \hat{x}_{4} ) \hfill \\ \dot{r}_{5} = - \delta_{5} \hat{x}_{5} (x_{5} - \hat{x}_{5} ) \hfill \\ \end{gathered} & \begin{gathered} \dot{r}_{6} = - \delta_{6} \hat{z}_{1} (x_{1} - \hat{x}_{1} ) \hfill \\ \dot{r}_{7} = \delta_{7} \hat{y}_{2} (x_{2} - \hat{x}_{2} ) \hfill \\ \dot{r}_{8} = - \delta_{8} \hat{x}_{3} (x_{3} - \hat{x}_{3} ) \hfill \\ \dot{r}_{9} = \delta_{9} \hat{y}_{4} (x_{4} - \hat{x}_{4} ) \hfill \\ \dot{r}_{10} = - \delta_{10} \hat{y}_{5} (x_{5} - \hat{x}_{5} ) \hfill \\ \end{gathered} \\ \end{array} . $$

The simulation is based on the following parameter settings:

$$ g = 0.33,\;K_{i} = 30,\;k_{ij} = 2,\;\theta = [\begin{array}{*{20}c} 1 & 1 & 1 & {0.001} & {0.009} & 1 & 1 & {0.009} & 1 & 1 \\ \end{array} ], $$
$$ [\begin{array}{*{20}c} a & b & c & d & e & f & l & h \\ \end{array} ] = [\begin{array}{*{20}c} {2.8} & {4.4} & {0.009} & {0.001} & {0.005} & 1 & 1 & 1 \\ \end{array} ] \quad \text{and\ the\ initial\ values} $$
$$ \begin{gathered} \hat{c}_{ij} (0) = 1.3,\;x_{i} (0) \in [ - 1.02, - 1.04],\;y_{i} (0) \in [ - 0.04,0.02],\;z_{i} (0) \in [ - 0.03,0.05], \hfill \\ [\begin{array}{*{20}c} {\hat{x}_{i} (0)} & {\hat{y}_{i} (0)} & {\hat{z}_{i} (0)} \\ \end{array} ] = [\begin{array}{*{20}c} { - 1.01} & {0.01} & {0.01} \\ \end{array} ], \hfill \\ \end{gathered} $$
$$ \begin{gathered} \hat{\theta }(0) = [\begin{array}{*{20}c} {r_{1} (0)} & {r_{2} (0)} & {r_{3} (0)} & {r_{4} (0)} & {r_{5} (0)} & {r_{6} (0)} & {r_{7} (0)} & {r_{8} (0)} & {r_{9} (0)} & {r_{10} (0)} \\ \end{array} ], \\ = [\begin{array}{*{20}c} 2 & 2 & 2 & {0.003} & {0.003} & 2 & 2 & {0.003} & 2 & 2 \\ \end{array} ] \\ \end{gathered} $$
$$ \begin{gathered} [ {\begin{array}{*{20}c} {\delta_{1} } & {\delta_{2} } & {\delta_{3} } & {\delta_{4} } & {\delta_{5} } & {\delta_{6} } & {\delta_{7} } & {\delta_{8} } & {\delta_{9} } & {\delta_{10} } \\ \end{array} } ] \\ = [ {\begin{array}{*{20}c} {10} & {10} & {10} & {0.01} & {0.01} & {10} & {10} & {0.01} & {10} & {10} \\ \end{array} } ]. \\ \end{gathered} $$

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mao, Y., Tang, W., Liu, Y. et al. Identification of biological neurons using adaptive observers. Cogn Process 10 (Suppl 1), 41–53 (2009). https://doi.org/10.1007/s10339-008-0230-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10339-008-0230-2

Keywords

Navigation