Skip to main content
Log in

Decomposition of needle/leaf litter from Scots pine, black cherry, common oak and European beech at a conurbation forest site

  • Original Paper
  • Published:
European Journal of Forest Research Aims and scope Submit manuscript

Abstract

Litter decomposition was studied for 2 years in a mixed forest serving as a water protection area (Rhine-Neckar conurbation, SW Germany). Two experiments differing in initial dry weight equivalent in litterbags were set up: one to compare decomposition of European beech leaves (Fagus sylvatica) with common oak leaves (Quercus robur), and the other comparing decomposition of Scots pine needles (Pinus sylvestris) with black cherry leaves (Prunus serotina Ehrh.), respectively. Mass losses were greater for oak litter than for beech (75.0 versus 34.6%), and for cherry litter than for pine (94.6 versus 68.3%). In both experiments, a strong initial loss of soluble compounds occurred. The changes in litter N and P concentrations and the decrease in C-to-N ratio coincided with changes in residual mass. However, neither tannin and phenolic concentrations nor NMR could explain the pronounced variation in mass loss after 2 years. Differences in litter palatability and toughness, nutrient contents and other organic compounds may be responsible for the considerable differences in residual mass between litter types. The fast decay of black cherry leaves appears to play a major role in the present humus dynamics at the studied site. Since black cherry has a high N demand, which is mainly met by root uptake from the forest floor, this species is crucial for internal N cycling at this conurbation forest site. These effects together may significantly contribute to prevent nitrate leaching from the forest ecosystem which is subject to a continuous N deposition on an elevated level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Adams MB, Angradi, TR (1996) Decomposition and nutrient dynamics of hardwood leaf litter in the Fernow Whole-Watershed Acidification Experiment. For Ecol Manage 83:61–69

    Google Scholar 

  • Almendros G, Dorado J, González-Vila FJ, Blanco MJ, Lankes U (2000) 13C NMR assessment of decomposition patterns during composting of forest shrub biomass. Soil Biol Biochem 32:793–804

    Google Scholar 

  • Appel HM, Govenor HL, Ascenzo MD, Siska E, Schultz JC (2001) Limitations of folin assays of foliar phenolics in ecological studies. J Chem Ecol 27:761–778

    Google Scholar 

  • Baldock JA, Preston CM (1995) Chemistry of carbon decomposition processes in forests as revealed by solid-state 13C-NMR. In: Kelly JM, McFee WW (eds) Carbon forms and functions in forest soils. Proc. 8th North American Forest Soils Conf. Soil Science Society of America, Madison, WI, pp 89–117

  • Baldock JA, Oades JM, Nelson PN, Skene TM, Golchin A, Clarke P (1997) Assessing the extent of decomposition of natural organic materials using solid-state 13C NMR spectroscopy. Aust J Soil Res 35:1061–1083

    Google Scholar 

  • Baxter JW, Pickett STA, Dighton J, Carreiro MM (2002) Nitrogen and phosphorus availability in oak forest stands exposed to contrasting anthropogenic impacts. Soil Biol Biochem 34:623–633

    Google Scholar 

  • Berg B (2000) Litter decomposition and organic matter turnover in northern forest soils. For Ecol Manage 133:13–22

    Google Scholar 

  • Berg B, Ekbohm G (1991) Litter mass-loss rates and decomposition patterns in some needle and leaf litter types. Long-term decomposition in a Scots pine forest VII. Can J Bot 69:1449–1456

    Google Scholar 

  • Berg B, Staaf H (1981) Leaching, accumulation and release of nitrogen in decomposing forest litter. In: Terrestrial nitrogen cycles. Processes, ecosystem strategies and management impacts. Ecol Bull 33:163–178

  • Berg B, Tamm CO (1991) Decomposition rate and nutrient dynamics of litter in long-term optimum nutrition experiments. I. Organic matter decomposition in Norway spruce (Picea abies) needle litter. Scand J For Res 6:305–321

    Google Scholar 

  • Berg B, Wessén B, Ekbohm G (1982) Nitrogen level and decomposition in Scots pine needle litter. Oikos 38:291–296

    Google Scholar 

  • Berg B, Berg M, Bottner P, Box E, Breymeyer A, Calvo de Anta R, Couteaux MM, Gallardo A, Escudero A, Kratz W, Madeira M, Malkonen E, Meentemeyer V, Munoz F, Piussi P, Remacle J, Virzo de Santo A (1993) Litter mass loss rates in pine forests of Europe and eastern United States: some relationships with climate and litter quality. Biogeochemistry 20:127–159

    Google Scholar 

  • Boerner REJ, Rebbeck J (1995) Decomposition and nitrogen release from leaves of three hardwood species grown under elevated O3 and/or CO2. Plant Soil 170:149–157

    Google Scholar 

  • Bornebusch CH (1953) Laboratorieforsøg til belysning af regnormenes biologi. Dansk Skovforen Tidsskr 38:557–579

    Google Scholar 

  • Cortez J (1998) Field decomposition of leaf litters: relationships between decomposition rates and soil moisture, soil temperature and earthworm activity. Soil Biol Biochem 30:783–793

    Google Scholar 

  • Dudley N, Stolton S (eds.) (2003): Running pure: The importance of forest protected areas to drinking water. Research report for the World Bank and WWF Alliance for Forest Conservation and Sustainable Use, 112 pp

  • Enriquez S, Duarte CM, Sand-Jensen K (1993) Patterns in decomposition rates among photosynthetic organisms: the importance of detritus C:N:P content. Oecologia 94:457–471

    Google Scholar 

  • Feger KH, Armbruster M, Zorniger M, Lorenz K (2001) Waldbodenmelioration in einem stadtnahen Trinkwasserschutzgebiet—Vergleich der bodenchemischen Auswirkungen von dolomitischem Kalk und basaltischem Gesteinsmehl. Mitt Dtsch Bodenkdl Ges 96:177–178

    Google Scholar 

  • Feger KH, Armbruster M, Feige K (2003) Nadel- und blattanalytische Charakterisierung der Nährstoffaugnahme in Traubenkirschen-Kiefernbeständen—Einfluss von Stamdortstrophie und Deposition sowie Reaktion auf Kalkung. Mitt Dtsch Bodenkdl Ges (in press)

  • Fioretto A, Musacchio A, Andolfi G, de Santo AV (1998) Decomposition dynamics of litter of various pine species in a Corsican pine forest. Soil Biol Biochem 30:721–727

    Google Scholar 

  • Gallardo A, Merino J (1993) Leaf decomposition in two Mediterranean ecosystems of southwest Spain: influence of substrate quality. Ecology 74:152–161

    Google Scholar 

  • Gholz HL, Wedin DA, Smitherman SM, Harmon ME, Parton WJ (2000) Long-term dynamics of pine and hardwood litter in contrasting environments: toward a global model of decomposition. Global Change Biol 6:751–765

    Google Scholar 

  • Goldman MB, Groffman PM, Pouyat RV, McDonell MJ, Pickett STA (1995) CH4 uptake and N availability in forest soils along an urban to rural gradient. Soil Biol Biochem 27:281–286

    Google Scholar 

  • Haag C, Wilhelm U (1998) Die Spätblühende Traubenkirsche: Arbeiten mit unerwünschter Baumart oder Verschleppung einer Katastrophe? Allg For Z Der Wald 53:276–279

    Google Scholar 

  • Hasegawa M, Takeda H (1996) Carbon and nutrient dynamics in decomposing pine needle litter in relation to fungal and faunal abundances. Pedobiologia 40:171–184

    Google Scholar 

  • Hättenschwiler S, Vitousek PM (2000) The role of polyphenols in terrestrial ecosystem nutrient cycling. Trends Ecol Evol 15:238–243

    Google Scholar 

  • Hernes PJ, Benner R, Cowie GL, Goñi MA, Bergamaschi BA, Hedges JL (2001) Tannin diagenesis in mangrove leaves from a tropical estuary: a novel molecular approach. Geochim Cosmochim Acta 65:3109–3122

    Google Scholar 

  • Horsley SB, Meinwald J (1981) Glucose-1-benzoate and prunasin from Prunus serotina. Phytochemistry 20:1127–1128

    Google Scholar 

  • Knacker T, Förster B, Römbke J, Frampton GK (2003) Assessing the effects of plant protection products on organic matter breakdown in arable fields-litter decomposition test systems. Soil Biol Biochem 35:1269–1287

    Google Scholar 

  • Kögel-Knabner I (2002) The macromolecular organic composition of plant and microbial residues as inputs to soil organic matter. Soil Biol Biochem 34:139–162

    Google Scholar 

  • Kratz W (1991) Decomposition process in a suburban forest ecosystem under consideration of the element flow in the litter layer. Verh Ges Ökol 19:363–373

    Google Scholar 

  • Kraus TEC, Yu Z, Preston CM, Dahlgren RA, Zasoski RJZ (2003a) Linking chemical reactivity and protein precipitation to structural characteristics of foliar tannins. J Chem Ecol 29:703–730

    Google Scholar 

  • Kraus TEC, Dahlgren RA, Zasoski RJZ (2003b) Tannins in nutrient dynamics of forest ecosystems—a review. Plant Soil 256:41–66

    Google Scholar 

  • Krumrei S, Feger KH, Lorenz K, Preston CM (2003) Dynamik des Massenverlustes sowie der Elementfreisetzung bei der Zersetzung von Blatt- bzw. Nadelstreu von Kiefer, Buche, Eiche und Traubenkirsche auf einem armen Sandstandort in der Nördlichen Oberrheinebene. Mitt Dtsch Bodenkdl Ges (in press)

  • Lisanework N, Michelsen A (1994) Litterfall and nutrient release by decomposition in three plantations compared with a natural forest in the Ethiopian highland. For Ecol Manage 65:149–164

    Google Scholar 

  • Loranger G, Ponge JF, Imbert D, Lavelle P (2002) Leaf decomposition in two semi-evergreen tropical forests: influence of litter quality. Biol Fertil Soils 35:247–252

    Google Scholar 

  • Lorenz K, Preston CM (2002) Characterization of high-tannin fractions from humus by carbon-13 cross-polarization and magic-angle spinning nuclear magnetic resonance. J Environ Qual 31:431–436

    Google Scholar 

  • Lorenz K, Preston CM, Raspe S, Morrison IK, Feger KH (2000) Litter decomposition and humus characteristics in Canadian and German spruce ecosystems: information from tannin analysis and 13C CPMAS NMR. Soil Biol Biochem 32:779–792

    Google Scholar 

  • Lovett GM, Traynor MM, Pouyat RV, Carriero MM, Zhu WX, Baxter JW (2000) Atmospheric deposition to oak forests along an urban-rural gradient. Environ Sci Technol 34:4294–4300

    Google Scholar 

  • Manders WF (1987) Solid-state 13C NMR determination of the syringyl/guaiacyl ratio in hardwoods. Holzforschung 41:13–18

    Google Scholar 

  • Markkola AM, Tarvainen O, Ahonen-Jonnarth U, Strömmer R (2002) Urban polluted soils induce elevated root peroxidase activity in Scots pine (Pinus sylvestris L.) seedlings. Environ Pollut 116:273–278

    Google Scholar 

  • Meersschaut D, Cuyper B, Vandekerkhove K, Lust N (1999) Monitoring natural stand change in the forest reserve of Liedekerke, Flanders (Belgium). Silva Gandavensis 64:1–16

    Google Scholar 

  • Northup RR, Dahlgren RA, McColl JG (1998) Polyphenols as regulators of plant-litter–soil interactions in northern California’s pygmy forest: a positive feedback? Biogeochemistry 42:189–220

    Google Scholar 

  • O’Conell AM (1988) Decomposition of leaf litter in karry (Eucalyptus diversicolor F. Muell.) forests of varying age. For Ecol Manage 24:113–125

    Google Scholar 

  • Palm CA, Sanchez PA (1991) Nitrogen release from the leaves of some tropical legumes as affected by their lignin and polyphenol contents. Soil Biol Biochem 23:83–88

    Google Scholar 

  • Pérez-Harguindeguy N, Díaz S, Cornelissen JHC, Vendramini F, Cabido M, Castellanos A (2000) Chemistry and toughness predict leaf litter decomposition rates over a wide spectrum of functional types and taxa in central Argentina. Plant Soil 218:21–30

    Google Scholar 

  • Pouyat RV, McDonell MJ (1991) Heavy-metal accumulations in forest soils along an urban-rural gradient in southeastern New York, USA. Water Air Soil Pollut 57–58:797–807

    Google Scholar 

  • Pouyat RV, McDonell MJ, Pickett STA (1997) Litter decomposition and nitrogen mineralization in oak stands along an urban-rural land-use gradient. Urb Ecosys 1:117–131

    Google Scholar 

  • Pouyat RV, Groffman P, Yesilonis I, Hernandez L (2002) Soil carbon pools and fluxes in urban ecosystems. Environ Pollut 116:S107–S118

    Google Scholar 

  • Preston CM (1999) Condensed tannins of salal (Gaultheria shallon Pursh): a contributing factor to seedling growth check on northern Vancouver Island? In: Gross GG, Hemingway RW, Yoshida T (eds). Plant polyphenols 2: Chemistry, biology, pharmacology. Kluwer Academic/Plenum Publishers, New York, pp. 825–841

  • Preston CM, Trofymow JA, the Canadian Intersite Decomposition Experiment Working Group (2000) Variability in litter quality and its relationship to litter decay in Canadian forests. Can J Bot 78:1269–1287

    Google Scholar 

  • Preston CM, Hempfling R, Schulten H-R, Schnitzer M, Trofymow JA, Axelson DE (1994) Characterization of organic matter in a forest soil of coastal British Columbia by NMR and pyrolysis-field ionization mass spectrometry. Plant Soil 158:69–82

    Google Scholar 

  • Preston CM, Trofymow JA, Sayer BG, Niu J (1997) 13C nuclear magnetic resonance spectroscopy with cross-polarization and magic-angle spinning investigation of the proximate analysis fractions used to assess litter quality in decomposition studies. Can J Bot 75:1601–1613

    Google Scholar 

  • Reh U, Kratz W, Kraepelin G, Anghern-Bettinazzi C (1990) Analysis of leaf and needle litter decomposition by differential scanning calorimetry and differential thermogravimetry. Biol Fertil Soils 9:188–191

    Google Scholar 

  • Ries J, Fischer G, Bächle A, Feger KH, Pawellek P, Mayer B (2000) Multiple Untersuchungen zur langfristigen Entwicklung von Gesamthärte und Sulfatkonzentrationen im Einzugsgebiet des Wasserwerkes Mannheim-Käfertal. GWF Wasser-Abwasser 14:39–46

  • Sachs L (1978) Angewandte Statistik: Anwendung statistischer Methoden. Springer, Berlin Heidelberg New York

  • Sariyildiz T, Anderson JM (2003) Decomposition of sun and shade leaves from three deciduous tree species, as affected by their chemical composition. Biol Fertil Soils 37:137–146

    Google Scholar 

  • Schirmer H, Vent-Schmidt TV (1979) Mittlere Niederschlagshöhen für Monate und Jahr im Zeitraum 1931–1960. In: Deutscher Wetterdienst (ed) Das Klima der Bundesrepublik Deutschland. Deutscher Wetterdienst, Offenbach, 24 pp

  • Schofield JA, Hagerman AE, Harold A (1998) Loss of tannins and other phenolics from willow leaf litter. J Chem Ecol 24:1409–1421

    Google Scholar 

  • Schroeder LA (1978) Consumption of black cherry leaves by phytophagous insects. Am Midl Nat 100:294–306

    Google Scholar 

  • Staaf H, Berg B (1982) Accumulation and release of plant nutrients in decomposing Scots pine needle litter. Long-term decomposition in a Scots pine forest II. Can J Bot 60:1561–1568

    Google Scholar 

  • Starfinger U (1990) Die Einbürgerung der Spätblühenden Traubenkirsche (Prunus serotina Erh.) in Mitteleuropa. Schriftenreihe des FB Landschaftsentwicklung. Technische Universität Berlin, Berlin, 119 pp

  • Swift MJ, Heal OW, Anderson JM (1979) Decomposition in terrestrial ecosystems. Blackwell, Oxford, 372 pp

  • Tian G, Brussard L, Tang BT (1995) Breakdown of plant residues with contrasting chemical composition under humid tropical conditions: effects of earthworms and millipedes. Soil Biol Biochem 27:277–280

    Google Scholar 

  • Trofymow JA, Moore TR, Titus B, Prescott C, Morrison I, Siltanen M, Smith S, Fyles J, Wein R, Camiré C, Duschene L, Kozak L, Kranabetter M, Visser S (2002) Rates of litter decomposition over 6 years in Canadian forests: influence of litter quality and climate. Can J For Res 32:789–804

    Google Scholar 

  • Van der Heyden D, Skelly J, Innes J, Hug C, Zhang J, Landolt W, Bleuler P (2001) Ozone exposure thresholds and foliar injury on forest plants in Switzerland. Environ Pollut 111:321–331

    Google Scholar 

  • Vesterdal L (1999) Influence of soil type on mass loss and nutrient release from decomposing foliage litter of beech and Norway spruce. Can J For Res 29:95–105

    Google Scholar 

  • von Wendorff G (1952) Die Prunus serotina in Mitteleuropa. Eine waldbauliche Monographie. Dissertation, Universität Hamburg

  • Yu Z, Dahlgren RA (2000) Evaluation of methods for measuring polyphenols in conifer foliage. J Chem Ecol 26:2119–2140

    Google Scholar 

  • Zhu WX, Carreiro MM (1999) Chemoautotrophic nitrification in acidic forest soils along an urban-to-rural transect. Soil Biol Biochem 31:1091–1100

    Google Scholar 

Download references

Acknowledgements

We thank the Mannheim Municipal Water Operations (MVV) for funding the experimental work. In particular, Dr. Ries (water management branch) and the staff of the Käfertal water plant gave valuable logistical and technical support. The Baden-Württemberg Forestry Administration (Weinheim District) helped in site selection. The technicians in the Tharandt soil laboratory, B. Kockisch, R. Rüger and M. Unger, carried out the chemical analyses with great diligence. We also thank the International Bureau of the BMBF (German Ministry of Science and Higher Education, Bonn) for funding travel to Canada within the cooperation program between Canada and Germany (WTZ-project CAN 98/033).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Klaus Lorenz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lorenz, K., Preston, C.M., Krumrei, S. et al. Decomposition of needle/leaf litter from Scots pine, black cherry, common oak and European beech at a conurbation forest site. Eur J Forest Res 123, 177–188 (2004). https://doi.org/10.1007/s10342-004-0025-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10342-004-0025-7

Keywords

Navigation