Skip to main content
Log in

Modestobacter lapidis sp. nov. and Modestobacter muralis sp. nov., isolated from a deteriorated sandstone historic building in Salamanca, Spain

  • Original Paper
  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

A polyphasic study was undertaken to establish the taxonomic status of two Modestobacter strains isolated from the surface of deteriorated sandstone of a historic building in Salamanca, Spain. The strains, isolates MDVD1T and MON 3.1T, were found to have chemotaxonomic and morphological properties consistent with their classification in the genus Modestobacter and to form distinct phyletic lines in the Modestobacter 16S rRNA gene tree. Isolate MDVD1T was found to be closely related to the type strain of Modestobacter versicolor (98.7 % similarity) and isolate MON 3.1T to the type strain of Modestobacter multiseptatus (98.6 % similarity). The isolates were distinguished readily from one another and from the Modestobacter type strains by a broad range of phenotypic properties, by qualitative and quantitative differences in fatty acid profiles and by BOX fingerprint patterns. On the basis of these data, it is proposed that the isolates be classified in the genus Modestobacter as Modestobacter lapidis sp. nov. and Modestobacter muralis sp. nov., with isolates MON 3.1T (CECT 8844T = DSM 100206T) and MDVD1T (CECT 8845T = DSM 100205T) as the respective type strains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Ahrens R, Moll G (1970) Ein neues knospendes Bakterium aus der Ostsee. Arch Mikrobiol 70:243–263

    Article  CAS  PubMed  Google Scholar 

  • Carro L, Spröer C, Alonso P, Trujillo ME (2012) Diversity of Micromonospora strains isolated from nitrogen fixing nodules and rhizosphere of Pisum sativum analyzed by multilocus sequence analysis. Syst Appl Microbiol 35:73–80

    Article  PubMed  Google Scholar 

  • Chouaia B, Crotti E, Brusetti L et al (2012) Genome sequence of Blastococcus saxobsidens DD2, a stone inhibiting bacterium. J Bacteriol 194:2752–2753

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Eppard M, Krumbein WE, Koch C, Rhiel E, Staley JT, Stackebrandt E (1996) Morphological, physiological and molecular characterization of actinomycetes isolated from dry soil, rocks and monument surfaces. Arch Microbiol 166:12–22

    Article  CAS  PubMed  Google Scholar 

  • Essoussi I, Ghodbane-Gtari F, Amairi H, Sghaier H, Jaouani A, Brusetti L, Daffonchio D, Boudabous A, Gtari M (2010) Esterase as an enzyme signature of Geodermatophilus adaptability to Sahara desert stones and monuments. J Appl Microbiol 108:1723–1732

    Article  CAS  PubMed  Google Scholar 

  • Felsenstein J (1981) Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17:368–376

    Article  CAS  PubMed  Google Scholar 

  • Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:383–391

    Article  Google Scholar 

  • Fitch WM (1971) Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 20:406–416

    Article  Google Scholar 

  • Gtari M, Essoussi I, Maaoui R, Sghaier H, Boujmil R et al (2012) Contrasted resistance of stone dwelling Geodermatophilaceae species to stresses known to give rise to reactive oxygen species. FEMS Microbiol Ecol 80:566–577

    Article  CAS  PubMed  Google Scholar 

  • Hasegawa T, Takizawa M, Tamida S (1983) A rapid analysis for chemical grouping of aerobic actinomycetes. J Gen Appl Microbiol 29:319–322

    Article  CAS  Google Scholar 

  • Jones K (1949) Fresh isolates of actinomycetes in which the presence of the sporogenous aerial mycelia is a fluctuating characteristic. J Bacteriol 57:141–145

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kim OS, Cho YJ, Lee K, Yoon SH, Kim M, Na H, Park SC, Jeon YS, Lee JH, Yi H, Won S, Chun J (2012) Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 62:716–721

    Article  CAS  PubMed  Google Scholar 

  • Kimura M (1980) A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120

    Article  CAS  PubMed  Google Scholar 

  • Lechevalier MP, De Biévre C, Lechevalier HA (1977) Chemotaxonomy of aerobic actinomycetes: phospholipid composition. Biochem Syst Ecol 5:249–260

    Article  CAS  Google Scholar 

  • Luedemann GM (1968) Geodermatophilus, a new genus of the Dermatophilaceae (Actinomycetes). J Bacteriol 96:1848–1858

    CAS  PubMed Central  PubMed  Google Scholar 

  • Luedemann GM (1971) Micromonospora purpureochromogenes (Waksman and Curtis 1916) comb. Nov. (subjective synonym, Micromonospora fusca Jensen 1932). Int J Syst Bacteriol 21:240–247

    Article  Google Scholar 

  • Mandel M, Marmur J (1968) Use of ultraviolet absorbance temperature profile for determining the guanine plus cytosine content of DNA. Methods Enzymol 12B:195–206

    Article  Google Scholar 

  • Meier-Kolthoff JP, Göker M, Spöer C, Klenk H-P (2013) When should a DDH experiment be mandatory in microbial taxonomy? Arch Microbiol 95:413–418

    Article  Google Scholar 

  • Mevs U, Stackebrandt E, Schumann P, Gallikowski CA, Hirsch P (2000) Modestobacter multiseptatus sp. nov., a budding actinomycete from soils of the Asgard Range (Transantarctic Mountains). Int J Syst Evol Microbiol 50:337–346

    Article  CAS  PubMed  Google Scholar 

  • Minnikin DE, O’Donnell AG, Goodfellow M, Alderson G, Athalye M, Schaal A, Parlett JH (1984) An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 2:233–241

    Article  CAS  Google Scholar 

  • Murray PR, Baron EJ, Phaller MA, Ternover JC, Yolkken RJ (1999) Manual of clinical microbiology, 7th edn. ASM Press, Washington DC

    Google Scholar 

  • Nie G-X, Ming H, Li S, Zhou E-M, Cheng J, Yu TT, Zhang J, Feng H-G, Tang S-K, Li W-J (2012) Geodermatophilus nigrescens sp. nov., isolated from a dry-hot valley. Antonie Van Leeuwenhoek 101:811–817

    Article  CAS  PubMed  Google Scholar 

  • Normand P (2006) Geodermatophilaceae fam. nov., a formal description. Int J Syst Evol Microbiol 56:2277–2278

    Article  CAS  PubMed  Google Scholar 

  • Normand P, Benson DR (2012) Family IV. Geodermatophilaceae 2006, 2277VP (Effective publication: Normand, Orso, Jeannin, Chapelon, Dawson, Evtuschenko and Misra, 1996, 8). In: Goodfellow M, Kämpfer P, Busse H-J, Trujillo MR, Suzuki K-I, Ludwig W, Whitman WB (eds) Bergey’s manual of systematic bacteriology, Part A, vol 5, 2nd edn. Springer, New York, p 528

    Google Scholar 

  • Qin S, Bian G-K, Zhang Y-J, Ying K, Cao C-L, Liu C-H, Dai C-C, Jiang J-H (2013) Modestobacter roseus sp. nov., an endophytic actinomycete isolated from the coastal halophyte Salicornia europea Linn, and emended description of the genus Modestobacter. Int J Syst Microbiol 63:2197–2202

    Article  CAS  Google Scholar 

  • Reddy GSN, Potrafka RM, Garcia-Pichel F (2007) Modestobacter versicolor sp. nov., an actinobacterium from biological soil crusts that produce melanins under oligotrophy, with emended descriptions of the genus Modestobacter and Modestobacter multiseptatus Mevs et al. 2000. Int J Syst Evol Microbiol 57:2000–2014

    Google Scholar 

  • Rohde A (2011) Microscopy. Methods Microbiol 38:61–100

    Article  CAS  Google Scholar 

  • Saitou N, Nei M (1987) The neighbour-joining method: a new method for constructing phylogenetic trees. Mol Biol Evol 4:406–425

    CAS  PubMed  Google Scholar 

  • Sasser M (1990) Identification of bacteria by gas chromatography of cellular fatty acids. MIDI technical note 101, MIDI Inc., Newark

  • Sen A, Daubin E, Abbro D, Gifford I, Berry AM, Normand P (2014) Phylogeny of the class Actinobacteria revisited in light of complete genomes. The orders ‘Frankiales’ and Micrococcales should be split into coherent entities: proposal of Frankiales ord. nov., Geodermatophilales ord. nov, Acidothermales ord. nov. and Nakamurellales ord. nov. Int J Syst Evol Microbiol 64:3821–3832

    Article  PubMed  Google Scholar 

  • Shirling EB, Gottlieb D (1966) Methods for characterization of Streptomyces species. Int J Syst Bacteriol 16:313–340

    Article  Google Scholar 

  • Sierra G (1957) A simple method for the detection of lipolytic activity of microorganisms and some observations on the influence of contact between cells and fatty substrates. Antonie Van Leeuwenhoek 23:15–22

    Article  CAS  PubMed  Google Scholar 

  • Staneck JL, Roberts GD (1974) Simplified approach to the identification of aerobic actinomycetes by thin-layer chromatography. Appl Microbiol 28:226–231

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tamura K, Peterson D, Peterson N, Stecker G, Nei M, Kumar S (2011) MEGA 5: molecular evolution genetics analysis using maximum likelihood, evolutionary distance and maximum parsimony methods. Mol Biol Evol 28:2731–2739

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Trujillo ME, Alonso-Vega P, Rodriguez R, Carro L, Cerda E, Alonso P, Martinez-Molina E (2010) The genus Micromonospora is widespread in legume root nodules: the example of Lupinus angustifolius. ISME J 4:1265–1281

    Article  PubMed  Google Scholar 

  • Urzi C, Brusetti P, Salamone C, Sorlini F, Stackebrandt E, Daffenchio D (2001) Biodiversity of Geodermatophilaceae isolated from altered stones and monuments in the Mediterranean basin. Environ Microbiol 3:471–479

    Article  CAS  PubMed  Google Scholar 

  • Urzi C, La Cono V, Stackebrandt E (2004) Design and application of two oligonucleotide probes in the identification of Geodermatophilaceae strains using fluorescence in situ hybridization. Environ Microbiol 6:678–685

    Article  CAS  PubMed  Google Scholar 

  • Versalovic J, Scheider M, De Bruijn FJ, Lupski JR (1994) Genomic fingerprinting of bacteria using repetitive sequence-based polymerase chain reaction. Methods Mol Cell Biol 5:25–40

    CAS  Google Scholar 

  • Wayne LG, Brenner DJ, Colwell RR, Grimont PAD, Kandler O et al (1987) International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37:463–464

    Article  Google Scholar 

  • Xiao J, Luo Y, Yu J, Xie J (2011) Modestobacter marinus sp. nov., a psychrotolerant actinobacterium from deep-sea, and emended description of the genus Modestobacter. Int J Syst Evol Microbiol 61:1704–17010

    Google Scholar 

Download references

Acknowledgments

Kanungnid Bukarasam is grateful for a scholarship from the Thai Royal Government and Michael Goodfellow for an Emeritus Fellowship from The Leverhulme Trust. ME Trujillo was financed by the Junta de Castilla and Leon (SA100A7) and Universidad de Salamanca, (Programa 1, 18KAZG/463AC01).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martha E. Trujillo.

Electronic supplementary material

Below is the link to the electronic supplementary material.

10482_2015_482_MOESM1_ESM.pptx

Figure S1. Two-dimensional thin-layer chromatography of polar lipids of strains MDVD1T (a, b, c) and MON 3.1T (d, e, f) stained with ninhydrin, molybdophosphoric acid and anisaldehyde, respectively. Abbrevations: DPG, diphosphatidylglycerol; PE, phosphatidylethanolamine; PG, phosphatidylglycerol; PI, phosphatidylinositol; PIM, phosphatidylinositol mannoside; PL1 and PL2, polar lipids (PPTX 1314 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Trujillo, M.E., Goodfellow, M., Busarakam, K. et al. Modestobacter lapidis sp. nov. and Modestobacter muralis sp. nov., isolated from a deteriorated sandstone historic building in Salamanca, Spain. Antonie van Leeuwenhoek 108, 311–320 (2015). https://doi.org/10.1007/s10482-015-0482-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10482-015-0482-7

Keywords

Navigation