Skip to main content
Log in

Modulation of oxidative phosphorylation machinery signifies a prime mode of anti-ageing mechanism of calorie restriction in male rat liver mitochondria

  • Research Article
  • Published:
Biogerontology Aims and scope Submit manuscript

Abstract

Mitochondria being the major source and target of reactive oxygen species (ROS) play a crucial role during ageing. We analyzed ageing and calorie restriction (CR)-induced changes in abundance of rat liver mitochondrial proteins to understand key aspects behind the age-retarding mechanism of CR. The combination of blue-native (BN) gel system with fluorescence Difference Gel Electrophoresis (DIGE) facilitated an efficient analysis of soluble and membrane proteins, existing as monomers or multi-protein assemblies. Changes in abundance of specific key subunits of respiratory chain complexes I, IV and V, critical for activity and/or assembly of the complexes were identified. CR lowered complex I assembly and complex IV activity, which is discussed as a molecular mechanism to minimize ROS production at mitochondria. Notably, the antioxidant system was found to be least affected. The GSH:GSSG couple could be depicted as a rapid mean to handle the fluctuations in ROS levels led by reversible metabolic shifts. We evaluated the relative significance of ROS generation against quenching. We also observed parallel and unidirectional changes as effect of ageing and CR, in subunits of ATP synthase, cytochrome P450 and glutathione S-transferase. This is the first report on such ‘putatively hormetic’ ageing-analogous effects of CR, besides the age-retarding ones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Balaban RS, Nemoto S, Finkel T (2005) Mitochondria, oxidants, and ageing. Cell 120:483–495

    Article  CAS  PubMed  Google Scholar 

  • Barja G (2004) Free radicals and ageing. Trends Neurosci 27:595–600

    Article  CAS  PubMed  Google Scholar 

  • Beier J, Beeh KM, Kornmann O, Buhl R (2003) Stability of glutathione in induced sputum: impact of freezing. Respiration 70:523–527

    Article  CAS  PubMed  Google Scholar 

  • Bevilacqua L, Ramsey JJ, Hagopian K, Weindruch R, Harper M-E (2004) Effects of short- and medium-term calorie restriction on muscle mitochondrial proton leak and reactive oxygen species production. Am J Physiol Endocrinol Metab 286:E852–E861

    Article  CAS  PubMed  Google Scholar 

  • Blum H, Beier H, Gross HJ (1987) Improved silver staining of plant proteins, RNA and DNA in polyacrylamide gels. Electrophoresis 8:93–97

    Article  CAS  Google Scholar 

  • Cao SX, Dhahbi JM, Mote PL, Spindler SR (2001) Genomic profiling of short- and long-term calorie restriction effects in the liver of ageing mice. Proc Natl Acad Sci USA 98:10630–10635

    Article  CAS  PubMed  Google Scholar 

  • Chang J, Cornell JE, Van Remmen H, Hakala K, Ward WF, Richardson A (2007) Effect of ageing and calorie restriction on the mitochondrial proteome. J Gerontol A Biol Sci Med Sci 62:223–234

    PubMed  Google Scholar 

  • Dani D, Dencher NA (2008) Native-DIGE: a new look at the mitochondrial membrane proteome. Biotechnol J 3:817–822

    Article  CAS  PubMed  Google Scholar 

  • Dencher NA, Frenzel M, Reifschneider N, Sugawa M, Krause F (2007) Proteome alterations in Rat mitochondria caused by aging. Ann N Y Acad Sci 1100:291–298

    Article  CAS  PubMed  Google Scholar 

  • Domenicali M, Caraceni D, Vendemiale G, Grattagliano I, Nardo B, Dall’ Agata M et al (2001) Food deprivation exacerbates mitochondrial oxidative stress in rat liver exposed to ischemia-reperfusion injury. J Nutr 131:105–110

    CAS  PubMed  Google Scholar 

  • Drew B, Phaneuf S, Dirks A, Selman C, Gredilla R, Lezza A, Barja G, Leeuwenburgh C (2003) Effects of ageing and calorie restriction on mitochondrial energy production in gastrocnemius muscle and heart. Am J Physiol Regul Integr Comp Physiol 284:R474–R480

    CAS  PubMed  Google Scholar 

  • Gillardon F, Rist W, Kussmaul L, Vogel J, Berg M, Danzer K, Kraut N, Hengerer B (2007) Proteomic and functional alterations in brain mitochondria from Tg2576 mice occur before amyloid plaque deposition. Proteomics 7:605–616

    Article  CAS  PubMed  Google Scholar 

  • Gomez J, Caro P, Naudi A, Portero-Otin M, Pamplona R, Barja G (2007) Effect of 8.5% and 25% calorie restriction on mitochondrial free radical production and oxidative stress in rat liver. Biogerontology 8:555–566

    Article  CAS  PubMed  Google Scholar 

  • Groebe KF, Krause F, Kunstmann B, Unterluggauer H, Reifschneider NH, Scheckhuber CQ, Sastri C et al (2007) Differential proteomic profiling of mitochondria from Podospora anserina, rat and human reveals distinct patterns of age-related oxidative changes. Exp Gerontol 42:887–898

    Article  CAS  PubMed  Google Scholar 

  • Higami Y, Tsuchiya T, Chiba T, Yamaza H, Muraoka I, Hirose M, Komatsu T, Shimokawa I (2006) Hepatic gene expression profile of lipid metabolism in rats: impact of caloric restriction and growth hormone/insulin-like growth factor-1 suppression. J Gerontol A Biol Sci Med Sci 61A:1099–1110

    CAS  Google Scholar 

  • Hofmann I, Schnölzer M, Kaufmann I, Franke WW (2002) Symplekin, a constitutive protein of karyo- and cytoplasmic particles involved in mRNA biogenesis in Xenopus laevis oocytes. Mol Biol Cell 13:1665–1676

    Article  CAS  PubMed  Google Scholar 

  • Hunzinger C, Wozny W, Schwall GP, Poznanović S, Stegmann W, Zengerling H, Schoepf R et al (2006) Comparative profiling of the mammalian mitochondrial proteome: multiple aconitase-2 isoforms including N-formylkynurenine modifications as part of a protein biomarker signature for reactive oxygen species. J Proteome Res 5:625–633

    Article  CAS  PubMed  Google Scholar 

  • Janssen RJ, Nijtmans LG, van der Heuvel LP, Smeitink JAM (2006) Mitochondrial complex I: structure, function and pathology. J Inherit Metab Dis 29:499–515

    Article  CAS  PubMed  Google Scholar 

  • Johnson D, Lardy HA (1967) Isolation of liver and kidney mitochondria. Methods Enzymol 10:94–96

    Article  CAS  Google Scholar 

  • Justo R, Boada J, Frontera M, Oliver J, Bermúdez J, Gianotti M (2005) Gender dimorphism in rat liver mitochondrial oxidative metabolism and biogenesis. Am J Physiol Cell Physiol 289:372–378

    Article  Google Scholar 

  • Kadenbach B (2003) Intrinsic and extrinsic uncoupling of oxidative phosphorylation. Biochim Biophys Acta 1604:77–94

    Article  CAS  PubMed  Google Scholar 

  • Kadenbach B, Merle P (1981) On the function of multiple subunits of cytochrome c oxidase from higher eukaryotes. FEBS Lett 135:1–11

    Article  CAS  PubMed  Google Scholar 

  • Kirby DM, Thorburn DR, Turnbull DM, Taylor RW (2007) Biochemical assays of respiratory chain complex activity. Methods Cell Biol 80:93–119

    Article  CAS  PubMed  Google Scholar 

  • Krause F (2006) Detection and analysis of protein-protein interactions in organellar and prokaryotic proteomes by native gel electrophoresis: (Membrane) protein complexes and supercomplexes. Electrophoresis 27:2759–2781

    Article  CAS  PubMed  Google Scholar 

  • Krause F, Seelert H (2008) Detection and analysis of protein-protein interactions of organellar and prokaryotic proteomes by blue native and colorless native gel electrophoresis. Curr Protoc Prot Sci 51:14.11.1–14.11.36 republished as 51:19.18.1–19.18.36

    Google Scholar 

  • Lee CK, Klopp RG, Weindruch R, Prolla TA (1999) Gene expression profile of ageing and its retardation by calorie restriction. Science 285:1390–1393

    Google Scholar 

  • Lilley KS, Friedman DB (2004) All about DIGE: quantification technology for differential-display 2D-gel proteomics. Expert Rev Proteomics 1:401–409

    Article  CAS  PubMed  Google Scholar 

  • Lin MT, Flint Beal M (2006) Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases. Nature 443:787–795

    Article  CAS  PubMed  Google Scholar 

  • Lopez-Lluch G, Hunt N, Jones B, Zhu M, Jamieson H, Hilmer S, Cascajo MV, Allard J, Ingram DK, Navas P, de Cabo R (2006) Calorie restriction induces mitochondrial biogenesis and bioenergetic efficiency. Proc Natl Acad Sci USA 103:1768–1773

    Article  CAS  PubMed  Google Scholar 

  • Marques I, Dencher NA, Videira A, Krause F (2007) Supramolecular organization of the respiratory chain in Neurospora crassa mitochondria. Eukaryot Cell 6:2391–2405

    Article  CAS  PubMed  Google Scholar 

  • Masoro EJ (2007) The role of hormesis in life extension by dietary restriction. Interdiscip Top Gerontol 35:1–17

    CAS  PubMed  Google Scholar 

  • Murphy MP (2009) How mitochondria produce reactive oxygen species. Biochem J 417:1–13

    Article  CAS  PubMed  Google Scholar 

  • Panov A, Dikalov S, Shalbuyeva N, Hemendinger R, Greenamyre JT, Rosenfeld J (2007) Species- and tissue-specific relationships between mitochondrial permeability transition and generation of ROS in brain and liver mitochondria of rats and mice. Am J Physiol Cell Physiol 292:C708–C718

    Article  CAS  PubMed  Google Scholar 

  • Perales M, Eubel H, Heinemeyer J, Colaneri A, Zabaleta E, Braun H-P (2005) Disruption of a nuclear gene encoding a mitochondrial gamma carbonic anhydrase reduces complex I and supercomplex I + III2 levels and alters mitochondrial physiology in Arabidopsis. J Mol Biol 350:263–277

    Article  CAS  PubMed  Google Scholar 

  • Prabakaran S, Swatton JE, Ryan MM, Huffaker SJ, Huang JT, Griffin JL, Wayland M et al (2004) Mitochondrial dysfunction in schizophrenia: evidence for compromised brain metabolism and oxidative stress. Mol Psychiatry 9:684–697

    Article  CAS  PubMed  Google Scholar 

  • Preston CC, Oberlin AS, Holmuhamedov EL, Gupta A, Sagar S et al (2008) Aging-induced alterations in gene transcripts and functional activity of mitochondrial oxidative phosphorylation complexes in the heart. Mech Ageing Dev 129:304–312

    Article  CAS  PubMed  Google Scholar 

  • Rattan SIS (2008) Hormesis in aging. Ageing Res Rev 7:63–78

    Article  PubMed  Google Scholar 

  • Sanz A, Caro P, Ibanez J, Gomez J, Gredilla R, Barja G (2005) Dietary restriction at old age lowers mitochondrial oxygen radical production and leak at complex I and oxidative DNA damage in rat brain. J Bioenerg Biomemb 37:83–90

    Article  CAS  Google Scholar 

  • Scanlan N (2001) Compromised hepatic detoxification in companion animals and its correction via nutritional supplementation and modified fasting-Hepatic detoxification in companion animals. Altern Med Rev 6:S24–S37

    PubMed  Google Scholar 

  • Schafer FQ, Buettner GR (2001) Redox environment of the cell as viewed through the redox state of the glutathione disulphide/glutathione couple. Free Radic Biol Med 30:1191–1212

    Article  CAS  PubMed  Google Scholar 

  • Schägger H, Pfeiffer K (2001) The ratio of oxidative phosphorylation complexes I-V in bovine heart mitochondria and the composition of respiratory chain supercomplexes. J Biol Chem 276:37861–37867

    PubMed  Google Scholar 

  • Shimokawa I, Higami Y, Tsuchiya T, Otani H, Komatsu T, Chiba T, Yamaza H (2003) Lifespan extension by reduction of the growth hormone-insulin-like growth factor-1 axis: relation to calorie restriction. FASEB J 17:1108–1119

    CAS  PubMed  Google Scholar 

  • Sohal RS, Ku H-H, Agarwal S, Forster MJ, Lal H (1994) Oxidative damage, mitochondrial oxidant generation and antioxidant defenses during aging and in response to food restriction in the mouse. Mech Ageing Dev 74:121–133

    Article  CAS  PubMed  Google Scholar 

  • Valle A, Guevara R, García-Palmer FJ, Roca P, Oliver J (2007) Sexual dimorphism in liver mitochondrial oxidative capacity is conserved under caloric restriction conditions. Am J Physiol Cell Physiol 293:1302–1308

    Article  Google Scholar 

  • Viswanathan S, Unlü M, Minden JS (2006) Two-dimensional difference gel electrophoresis. Nat Protoc 1:1351–1358

    Article  CAS  PubMed  Google Scholar 

  • Waterland RA, Basu A, Chance B, Poyton RO (1991) The isoforms of yeast cytochrome c oxidase subunit V alter the in vivo kinetic properties of the holoenzyme. J Biol Chem 266:4180–4186

    CAS  PubMed  Google Scholar 

  • Weishaupt A, Kadenbach B (1992) Selective removal of subunit VIb increases the activity of cytochrome c oxidase. Biochemistry 31:11477–11481

    Article  CAS  PubMed  Google Scholar 

  • Yoon M, Madden MC, Barton HA (2006) Developmental expression of aldehyde dehydrogenase in rat: a comparison of liver and lung development. Toxicol Sci 89:386–398

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by EC FP6 contract number LSHM-CT-2004-512020, MiMage, to N.A.D. and Deutsche Forschungsgemeinschaft grant SFB 472 to N.A.D. and H. Seelert. We are grateful to Dr. Linda Ottoboni (Functional Genome analysis, DKFZ, Heidelberg, Germany) and Dr. Holger Eubel (ARC Centre of Excellence in Plant Energy Biology, Australia) for fruitful discussions on DIGE, Kerstin Kammerer and Sabine Fiedler from Functional Proteome Analysis, DKFZ, Heidelberg, Germany, for technical assistance in mass spectrometry.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Diksha Dani or Norbert A. Dencher.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dani, D., Shimokawa, I., Komatsu, T. et al. Modulation of oxidative phosphorylation machinery signifies a prime mode of anti-ageing mechanism of calorie restriction in male rat liver mitochondria. Biogerontology 11, 321–334 (2010). https://doi.org/10.1007/s10522-009-9254-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10522-009-9254-y

Keywords

Navigation