Skip to main content

Advertisement

Log in

The impact of discharge change on physical instream habitats and its response to river morphology

  • Published:
Climatic Change Aims and scope Submit manuscript

Abstract

The impact of climate-induced discharge change on fish habitats, based on 1951–2008 time series, was investigated within the crystalline catchment of the Grosse Mühl River in Northern Austria. A significant trend change of air temperature, based on Mann–Whitney statistical testing, was recorded for spring 1989 (P = 98.9 %) and summer 1990 (P = 99.9 %). This led to a pronounced increase in summer low flow periods. Hydrodynamic-numerical (one-dimensional/two-dimensional) modelling was applied to simulate the changing habitat characteristics due to decreasing discharge in relation to various morphological patterns (riffle-pool/plane-bed reaches). Using bathymetric data, which were sampled on cross sectional measurements, we clearly determined that plane-bed reaches (featureless bed forms) are sensitive to climate-related, reduced discharge, whereas riffle-pool reaches continued to exhibit suitable physical fish habitats even under extreme low-flow conditions. The impact of the decreased summer discharge on instream habitats was strong for subadult and adult grayling which have been used as target fish species. In situ measurements in microhabitats (velocity/depth) revealed habitat suitabilities. These values were taken as biotic input for habitat evaluation on the micro scale. The findings clearly show that river morphology is a decisive parameter in terms of habitat preservation and restoration in the context of the future impacts of climate change (decreased discharge).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Alley RB, Marotzke J, Nordhaus WD, Overpeck JT, Peteet DM, Pielke RA, Pierrehumbert RT, Rhines PB, Stocker TF, Talley LD, Wallace JM (2003) Abrupt climate change. Science 299:2005–2010. doi:10.1126/science.1081056

    Article  Google Scholar 

  • Arnell NW (1999) The effect of climate change on hydrological regimes in Europe: a continental perspective. Global Environ Change 9:5–23. doi:10.1016/S0959-3780(98)00015-6.x

    Article  Google Scholar 

  • Ashmore P, Church M (2001) The impact of climate change on rivers and river processes in Canada. Geological Survey of Canada, Bulletin 555, 58

  • BAW (2009) Leitfaden zur Erhebung der biologischen Qualitätselemente, Teil A1—Fische. Lebensministerium, p 73; ISBN: 978-3-85174-059-2

  • BAW—IGF (2008) Fish database Austria. Institute for Water Ecology, Fisheries and Lake Research

  • Bêche LA, Connors PG, Resh VH, Merenlender AM (2009) Resilience of fishes and invertebrates to prolonged drought in two California streams. Ecography 5:778–788. doi:10.1111/j.1600-0587.2009.05612

    Article  Google Scholar 

  • Bernardo JM, Ilheu M, Matono P, Costa AM (2003) Interannual variation of fish assemblage structure in a mediterranean river: implications of streamflow on the dominance of native or exotic species. River Res Appl 19:521–532. doi:10.1002/rra.726

    Article  Google Scholar 

  • Bertlwieser F (1999) Mühlen—Hämmer—Sägen. Oberes Mühlviertel, Böhmerwald, Bayerischer Wald. Förderverein St. Thoma im Böhmerwald (ed).—Bründlberg/Haslach

  • Bovee KD (1986) Development and evaluation of habitat suitability criteria for use in the instream flow incremental methodology. Biological report 86:p 235, US Fish and Wildlife Service

  • Bovee KD, Cochnauer T (1977) Development and evaluation of weighted criteria, probability-of-use curves for instream flow assessments: Fisheries. Instream Flow Information Paper 3. U.S.D.I. Fish. Wildl. Serv., Office of Biol. Serv. FWS/OBS-77/63

  • Bozek MA, Rahel FJ (1992) Generality of microhabitat suitability models for young Colorado River cutthroat trout (Oncorynchus clarki pleuriticus) across sites and among years in Wyoming streams. Can J Fish Aquat Sci 49:552–564. doi:10.1139/f92-065

    Article  Google Scholar 

  • Bronstert A (2004) Rainfall-runoff modelling for assessing impacts of climate and land-use change. Hydrol Process 18:567–570. doi:10.1002/hyp.5500

    Article  Google Scholar 

  • Clark ME, Rose KA, Levine DA, Hargrove WW (2001) Predicting climate change effects on Appalachian trout: combining GIS and individual-based modeling. Ecol Appl 11:161–178. doi:10.1890/1051-0761

    Article  Google Scholar 

  • Csar D, Gumpinger C (2008) Ergebnisse der Elektrobefischungen im Rahmen des Landschaftspflegeplans “Böhmerwald und Mühltäler”. p 6

  • Delft Hydraulics (2006) Technical documentation of the P.-EMS. Delft Hydraulics Laboratories, NL

  • Diplas P, Shen Y (2007) Use of two- and three dimensional hydraulic models for addressing ecological aspects in stream flow. Extended Abstract of the 6th international Symposium on Ecohydraulics. Christchurch/NZ

  • Flebbe PA, Roghair LD, Bruggink JL (2006) Spatial modelling to project southern Appalachian trout distribution in warmer climate. Trans Am Fish Soc 135:1371–1382. doi:10.1577/T05-217.1

    Article  Google Scholar 

  • Florsheim JL (1985) Fluvial requirements for gravel bar formation in northwestern California, Master thesis, Arcata, California, Humboldt State University

  • Fuchs K, Hacker W, Pinterits S, Splechtna B, Strauch M (2003) Raumeinheit Böhmerwald, aus Natur und Landschaft—Leitbilder für Oberösterreich, Band 9; Amt der Oberösterreichischen Landesregierung, Naturschutzabteilung

  • Gard M (2005) Variability in flow-habitat relationships as a function of transect number for PHABSIM modelling. River Res Appl 21:1013–1019. doi:10.1002/rra.862

    Article  Google Scholar 

  • Gibbins CN, Moir HJ, Webb JH, Soulsby C (2002) Assessing discharge use by spawning Atlantic salmon: a comparison of discharge electivity indices and PHABSIM simulations. River Res Appl 18:383–395. doi:10.1002/rra.685

    Article  Google Scholar 

  • Gruber FH (1928) Geologische Untersuchungen im oberösterreichischen Mühlviertel. Dissertation, University Linz

  • Habersack H, Piégay H (2008) River restoration in the Alps and their surrounding: past experiences and future challenges. In: Habersack H, Piégay H, Rinaldi M (eds) Gravel-Bed Rivers VI: from process understanding to river restoration, Elsevier, pp 703–738

  • HAÖ (2007) Hydrologischer Atlas Österreichs. (ed.) Bundesministerium für Land- und Forstwirtschaft, Umwelt und Wasserwirtschaft, Abteilung Wasserhaushalt. ISBN 3-85437-250-7

  • Hari RE, Livingstone DM, Siber R, Burckhard-Holm P, Güttinger H (2006) Consequences of climatic change for water temperature and brown trout populations in Alpine rivers and streams. Glob Chang Biol 12:10–26. doi:10.1111/j.1365-2486.2005.01051.x

    Article  Google Scholar 

  • Hauer C, Unfer G, Tritthart M, Formann E, Habersack H (2011a) Variability of mesohabitat characteristics in riffle-pool reaches: testing an integrative evaluation concept (FGC) for MEM-application. River Res Appl 27(4):403–430

    Google Scholar 

  • Hauer C, Unfer G, Tritthart M, Habersack H (2011b) Effects of stream channel morphology, transport processes and effective discharge on salmonid spawning habitats. Earth Surf Process Landf 36(5):672–685

    Google Scholar 

  • Hauer C, Habersack H (2009) Morphodynamics of a 1000-year flood in the Kamp River, Austria, and impacts on floodplain morphology. Earth Surf Proc Land 34:654–682. doi:10.1002/esp.1763

    Article  Google Scholar 

  • Hauer C, Mandlburger G, Habersack H (2009) Hydraulically related hydro-morphological units: description based on a new conceptual Mesohabitat Evaluation Model (MEM) using LiDAR data as geometric input. River Res Appl 25:29–47. doi:10.1002/rra.1083

    Article  Google Scholar 

  • Hauer C, Unfer G, Schmutz S, Habersack H (2008) Morphodynamic effects on the habtiat of juvenile cyprinids (Chondrostoma nasus) in a restored Austrian lowland river. Environ Manage 42:279–296. doi:10.1007/s00267-008-9118-2

    Article  Google Scholar 

  • Haslinger K (2009) Klimaänderungsszenarien für den Oberlauf der Großen Mühl—Fehlerevaluierung von ECHAM5/REMO-Inputdaten und hydrologische Analyse. Master thesis, BOKU University Vienna

  • Hirsch RM, Walker JF, Day JC, Kallio R (1990) The influence of man on hydrologic systems. In: Wolman MG, Riggs HC (eds) Surface water hydrology. Geological Society of America, Geology of North America, v. 0–1. pp 329–359

  • Houghton JT, Ding Y, Griggs DJ, Noguer M, van der Linden PJ, Xiaosu D (2001) Climate Change 2001: the scientific basis. Cambridge Univ. Press, Cambridge

    Google Scholar 

  • Hurrel JW, Van Loon H (1997) Decadal variations in climate associated with the North Atlantic Oscillation. Clim Chang 36:301–326. doi:10.1023/A:1005314315270

    Article  Google Scholar 

  • Jungwirth M, Moog O, Muhar S (1993) Effects of river bed restructuring on fish and benthos of a 5th-order stream, Melk, Austria. Regul River 8:195–204. doi:10.1002/rrr.3450080122

    Article  Google Scholar 

  • Jungwirth M, Haidvogel G, Muhar S, Schmutz S (2003) Angewandte Fischökologie an Fließgewässern. UTB Facultas

  • Karl TR (2003) Modern global climate change. Science 302:1719–1723. doi:10.1126/science.1090228

    Article  Google Scholar 

  • Knox JC (1983) Response of river systems to Holocene climates. In: Wright HE Jr (ed) Late quaternary environments of the United States Volume 2, the Holocene. University of Minnesota Press, Minneapolis

    Google Scholar 

  • Knox JC (1993) Large increases in flood magnitude in response to modest changes in climate. Nature 361:430–432. doi:10.1038/361430a0

    Article  Google Scholar 

  • Lane EW, Carlson EJ (1953) Some factors affecting the stability of canals constructed in coarse granular materials. Proceedings of the Minnesota International Hydraulics Convention, International Association of Hydraulic Research and America Society of Civil Engineers, pp 37–48

  • Leopold LB, Wolman MG, Miller JP (1964) Fluvial processes in geomorphology. Freeman, San Francisco

    Google Scholar 

  • Lørup JK, Refsgaard JC, Mazvimavi D (1998) Assessing the effect of land use change on catchment runoff by combined use of statistical test and hydrological modelling: case studies from Zimbabwe. J Hydrol 205:147–163

    Article  Google Scholar 

  • Mader H, Steidl T, Wimmer R (1996) Klimatologisch-hydrologische Typisierung der österreichischen Fließgewässer, Umweltbundesamt

  • Magalhães MF, Beja P, Schlosser IJ, Collares-Pereira MJ (2007) Effects of multi-year droughts on fish assemblages of seasonally drying Mediterranean streams. Freshw Biol 52:1494–1510. doi:10.1111/j.1365-2427.2007.01781.x

    Article  Google Scholar 

  • Manly BFJ, McDonald LL, Thomas TL, Erickson WP (2002) Resource selection by animals, 2nd edn. Kluwer, Boston

    Google Scholar 

  • Marks JC, Power ME, Parker MS (2000) Flood disturbance, algal productivity and interannual variation in food chain length. Oikos 90:20–27. doi:10.1034/j.1600-0706.2000.900103.x

    Article  Google Scholar 

  • Mattula C, Schmutz S, Melcher A, Gerersdorfer T, Haas P (2007) Assessing the impact of downscaled climate change simulation on the fish fauna in an Inner-Alpine River. Int J Biometeorol 52:127–137. doi:10.1007/s00484-007-0107-6

    Article  Google Scholar 

  • Meyer JL, Sale MJ, Mulholland PJ, Poff NL (1999) Impacts of climate change on aquatic ecosystems functioning and health. J Am Water Res Assoc 35:1373–1386. doi:10.1111/j.1752-1688.1999.tb04222.x

    Article  Google Scholar 

  • Minshall GW (1988) Stream ecosystem theory: a global perspective. JN Am Benthol Soc 8:263–288. doi:263, ISSN: 0887-3593

    Article  Google Scholar 

  • Montgomery DR, Buffington JM (1997) Channel-reach morphology in mountain drainage basins. GSA Bull 109:596–611. doi:10.1130/0016-7606

    Article  Google Scholar 

  • Mounton AM, Schneider M, Depestele J, Goethals PLM, De Pauw N (2007) Fish habitat modelling as a tool for river management. Ecol Eng 29:305–315. doi:doi:10.1016/j.ecoleng.2006.11.002

    Article  Google Scholar 

  • Muhar S, Kainz M, Schwarz M (1998) Ausweisung flusstypspezifisch erhaltener Fließgewässerabschnitte in Österreich—Fließgewässer mit einem Einzugsgebiet >500 km² ohne Bundesflüsse, Wasserwirtschaftskataster, Bundesministerium für Land- und Forstwirtschaft, p 117

  • Mulholland PJ, Best GR, Coutant CC, Hornberger GM, Meyer L, Robinson PJ, Stenberg JR, Turner RE, Vera-Herrera F, Wetzel RG (1997) Effects of climate change on freshwater ecosystems of the south-eastern United States and the Gulf of Mexico. Hydrol Process 11:949–970. doi:10.1002/(SICI)1099-1085

    Article  Google Scholar 

  • Nadakumar N, Mein RG (1996) Uncertainty in rainfall—runoff model simulations and the implications for predicting the hydrological effects of land-use change. J Hydrol 192:211–232. doi:10.1016/S0022-1694(96)03106-x

    Article  Google Scholar 

  • NGP (2010) Nationaler Gewässerbewirtschaftungsplan, Donau—Rhein—Elbe (ed) Lebensministerium

  • Nujic M (1999) Praktischer Einsatz eines hochgenauen Verfahrens für die Berechnung von tiefengemittleten Strömungen. Mitteilungen des Institutes der Bundeswehr München, Nr. 64

  • Nykänen M, Huusko A, Lahti M (2004) Changes in movement, range and habitat preference of adult grayling from late summer to early winter. J Fish Biol 64:1386–1398. doi:10.1111/j.0022-1112.2004.00403.x

    Article  Google Scholar 

  • Nykänen M, Huusko A, Mäki-Petäys A (2001) Seasonal changes in the habitat use and movements of adult European grayling in a large subarctic river. J Fish Biol 58:506–519. doi:10.1111/j.1095-8649.2001.tb02269.x

    Article  Google Scholar 

  • Pauleit S, Ennos R, Golding Y (2003) Modelling the environmental impact of urban use and land cover change—a study in Mereyside. UK. Landsc Urban Plan 71:295–310. doi:10.1016/j.landurbplan.2004.03.009

    Google Scholar 

  • Pettitt AN (1979) A non-parametric approach to the change point problem. Appl Stat 28:126–135

    Article  Google Scholar 

  • Pironneau P (1989) Finite element methods for fluids. Masson, Paris

    Google Scholar 

  • Poff NL, Ward JV (1989) Implications of streamflow variability and predictability for lotic community structure: a regional analysis of streamflow patterns. Can J Fish Aquat Sci 46:1805–1818

    Article  Google Scholar 

  • Poff NL (1992) Regional hydrologic response to climate change: an ecological perspective. In: Firth P, Fisher SG (eds) Global climate change and freshwater ecosystems. Springer, New York

    Google Scholar 

  • Poff NL, Tokar S, Johnson P (1996) Stream hydrological and ecological responses to climate change assessed with an artificial neural network. Limnol Oceanogr 41:857–863

    Article  Google Scholar 

  • Poff NL, Brinson MM, Day JW (2002) Aquatic ecosystems and global climate change: potential impacts on inland freshwater and coastal wetland ecosystems in the United States. Pew Center on Global Climate Change, Arlington

    Google Scholar 

  • Power ME, Sun A, Parker G, Dietrich WE, Wootton JT (1995) Hydraulic food chain models: an approach to the study of food-web dynamics in large rivers. Bioscience 45:159–167

    Article  Google Scholar 

  • Power ME, Parker MS, Dietrich WE (2008) Seasonal reassembly of a river food web: floods, droughts, and impact on fish. Ecol Monogr 78:263–282. doi:10.1890/06-0902.1

    Article  Google Scholar 

  • Rahel FJ, Keleher CJ, Anderson JL (1996) Potential habitat loss and population fragmentation for cold water fish in the North Platte River drainage of the Rocky Mountains: response to climate warming. Limnol Oceanogr 41:1116–1123

    Article  Google Scholar 

  • Railsback SF, Stauffer HW, Harvey BC (2003) What can habitat preference models tell us? Tests using a virtual trout population. Ecol Appl 13:1580–1594. doi:10.1890/02-5051

    Article  Google Scholar 

  • Schemel LE, Sommer TR, Muller-Solger AB, Harrell WC (2004) Hydrologic variability, water chemistry, and phytoplankton biomass in a large floodplain of the Sacramento River, CA, USA. Hydrobiologia 513:129–139. doi:10.1023/B:hydr.0000018178.85404.1c

    Article  Google Scholar 

  • Schmutz S (1995) Zonierung und Bestandsprognose von Bachforelle (Salmo trutta f. fario, L.), Regenbogenforelle (Oncorynchus mykiss, WAL.) und Äsche (Thymallus thymallus, L.) anhand von Makrohabitatparametern in österreichischen Rhithralgewässern. Dissertation, BOKU -University of Applied Life Sciences, Vienna

  • Schönwiese CD (2008) Klimatologie, 3. Auflage, Ulmer Stuttgart

  • Schumm SA (2005) River variability and complexity. Cambridge University Press

  • Simons DB, Richardson EV, Nordin CF (1965) Sedimentary structures generated by flow in alluvial channels. In: Middleton GV (ed) Primary sedimentary structures and their hydrodynamic interpretation. Society of Economic Paleontologists and Mineralologists, Tulsa, pp 34–52

    Google Scholar 

  • Strayer DL, Pace ML, Caraco NF, Cole JJ, Findlay SEG (2008) Hydrology and grazing jointly control a large-river food web. Ecology 89:12–18. doi:10.1890/07-0979.1

    Article  Google Scholar 

  • Turner MG, Gardner RH, O’Neill RV (2001) Landscape ecology in theory and practice - pattern and process. Springer Science+Business Media, Inc., New York

    Google Scholar 

  • University of Karlsruhe (2009) Application of the TESTEN software. Users manual

  • USACE (2002) HEC—RAS User manual 3.1.1. U.S. Corps of Engineers

  • Varley ME (1967) British freshwater fishes—factors affecting their distribution. Fishing News (Books) Limited, London

    Google Scholar 

  • Vehanen T, Huusko A, Yrjänä T, Lathi M, Mäki-Petäys A (2003) Habitat preference by grayling (Thymallus thymallus) in an artificially modified, hydropeaking riverbed: a contribution to understand the effectiveness of habitat enhancement measures. J Appl Ichthyol 19:15–20. doi:10.1046/j.1439-0426.2003.00354.x

    Article  Google Scholar 

  • Wagner C, Trumler G (1997) Das Mühlviertel: natur- und kulturlandschaft. Verlag Brandstätter, Vienna

    Google Scholar 

  • Wheaton JM, Brasington J, Darby SE, Merz JE, Pasternack GB, Sear DA, Vericant D (2009) Linking geomorphic changes to salmonid spawning habitat—a scale relevant to fish. River Res Appl. doi:10.1002/rra.1305

  • Williams JG (1996) Lost in space: minimum confidence intervals for idealized PHABSIM Studies. Trans Am Fish Soc 125:458–465. doi:10.1577/1548-8659

    Article  Google Scholar 

  • Williams JG, Haak AL, Neville HM, Colyer WT (2009) Potential consequences of climate change to persistence of cutthroat trout populations. N Am J Fish Manag 29:533–548. doi:10.1577/M08-072.1

    Article  Google Scholar 

  • Wohl EE (2000) Mountain rivers. American Geophysical Union, Washington, DC

    Book  Google Scholar 

  • Wundt W (1950) Die größten Abflußspenden in Abhängigkeit von der Fläche. Wasserwirtschaft 40:59–64

    Google Scholar 

  • Zick D (2003) Fischökologische Leitbilderstellung im Fischereirevier Rohrbach

Download references

Acknowledgements

The authors wish to thank Dr. Liebert (University of Karlsruhe) for providing the software TESTEN and Christine Hannesschläger for supportive field work and two anonymous reviewers for their contribution to the paper. The study was carried out within the DSS_KLIM:EN project financed by the Austrian governmental funding for climate change research. The financial support by the Federal Ministry of Economy, Family and Youth and the National Foundation of Research, Technology and Development is gratefully acknowledged. Moreover, the financial support by the Federal.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christoph Hauer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hauer, C., Unfer, G., Holzmann, H. et al. The impact of discharge change on physical instream habitats and its response to river morphology. Climatic Change 116, 827–850 (2013). https://doi.org/10.1007/s10584-012-0507-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10584-012-0507-4

Keywords

Navigation