Skip to main content
Log in

Detecting the effects of coal mining, acid rain, and natural gas extraction in Appalachian basin streams in Pennsylvania (USA) through analysis of barium and sulfate concentrations

  • Original Paper
  • Published:
Environmental Geochemistry and Health Aims and scope Submit manuscript

Abstract

To understand how extraction of different energy sources impacts water resources requires assessment of how water chemistry has changed in comparison with the background values of pristine streams. With such understanding, we can develop better water quality standards and ecological interpretations. However, determination of pristine background chemistry is difficult in areas with heavy human impact. To learn to do this, we compiled a master dataset of sulfate and barium concentrations ([SO4], [Ba]) in Pennsylvania (PA, USA) streams from publically available sources. These elements were chosen because they can represent contamination related to oil/gas and coal, respectively. We applied changepoint analysis (i.e., likelihood ratio test) to identify pristine streams, which we defined as streams with a low variability in concentrations as measured over years. From these pristine streams, we estimated the baseline concentrations for major bedrock types in PA. Overall, we found that 48,471 data values are available for [SO4] from 1904 to 2014 and 3243 data for [Ba] from 1963 to 2014. Statewide [SO4] baseline was estimated to be 15.8 ± 9.6 mg/L, but values range from 12.4 to 26.7 mg/L for different bedrock types. The statewide [Ba] baseline is 27.7 ± 10.6 µg/L and values range from 25.8 to 38.7 µg/L. Results show that most increases in [SO4] from the baseline occurred in areas with intensive coal mining activities, confirming previous studies. Sulfate inputs from acid rain were also documented. Slight increases in [Ba] since 2007 and higher [Ba] in areas with higher densities of gas wells when compared to other areas could document impacts from shale gas development, the prevalence of basin brines, or decreases in acid rain and its coupled effects on [Ba] related to barite solubility. The largest impacts on PA stream [Ba] and [SO4] are related to releases from coal mining or burning rather than oil and gas development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Adams, M. B. (2011). Land application of hydrofracturing fluids damages a deciduous forest stand in West Virginia. Journal of Environmental Quality, 40(4), 1340–1344. doi:10.2134/jeq2010.0504.

    Article  CAS  Google Scholar 

  • Alexander, R. B., Slack, J. R., Ludtke, A. S., Fitzgerald, K. K., & Schertz, T. L. (1998). Data from selected US. Geological Survey National stream water quality monitoring networks. Water Resources Research, 34(9), 2401–2405. doi:10.1029/98wr01530.

    Article  CAS  Google Scholar 

  • Brantley, S. L., Yoxtheimer, D., Arjmand, S., Grieve, P., Vidic, R. D., Pollak, J., et al. (2014). Water resource impacts during unconventional shale gas development: The Pennsylvania experience. International Journal of Coal Geology, 126, 140–156. doi:10.1016/j.coal.2013.1012.1017.

    Article  CAS  Google Scholar 

  • Cravotta Iii, C. A. (2008). Dissolved metals and associated constituents in abandoned coal-mine discharges, Pennsylvania, USA. Part 2: Geochemical controls on constituent concentrations. Applied Geochemistry, 23(2), 203–226. doi:10.1016/j.apgeochem.2007.10.003.

    Article  Google Scholar 

  • Faoro, R. B., & McMullen, T. B. (1977). National trends in trace metals in ambient air, 1965–1974 (pp. 28). Environmental Protection Agency, Research Triangle Park, NC (USA). Monitoring and Data Analysis Div.

  • Hanor, J. S. (2000). Barite–celestine geochemistry and environments of formation. Reviews in Mineralogy and Geochemistry, 40(1), 193–275. doi:10.2138/rmg.2000.40.4.

    Article  CAS  Google Scholar 

  • Hanor, J. S., & Chan, L.-H. (1977). Non-conservative behavior of barium during mixing of Mississippi River and Gulf of Mexico waters. Earth and Planetary Science Letters, 37(2), 242–250. doi:10.1016/0012-821X(77)90169-8.

    Article  CAS  Google Scholar 

  • Hladik, M. L., Focazio, M. J., & Engle, M. (2014). Discharges of produced waters from oil and gas extraction via wastewater treatment plants are sources of disinfection by-products to receiving streams. Science of the Total Environment, 466–467, 1085–1093. doi:10.1016/j.scitotenv.2013.08.008.

    Article  Google Scholar 

  • Johnson, J. W., Oelkers, E. H., & Helgeson, H. C. (1992). Supcrt92. Computational Geosciences, 18, 899–947.

    Article  Google Scholar 

  • Kim, K.-H., Yun, S.-T., Kim, H.-K., & Kim, J.-W. (2015). Determination of natural backgrounds and thresholds of nitrate in South Korean groundwater using model-based statistical approaches. Journal of Geochemical Exploration, 148, 196–205. doi:10.1016/j.gexplo.2014.10.001.

    Article  CAS  Google Scholar 

  • Kirby, C. S., McInerney, B., & Turner, M. D. (2008). Groundtruthing and potential for predicting acid deposition impacts in headwater streams using bedrock geology, GIS, angling, and stream chemistry. Science of the Total Environment, 393(2–3), 249–261. doi:10.1016/j.scitotenv.2007.12.026.

    Article  CAS  Google Scholar 

  • Llewellyn, G. T. (2014). Evidence and mechanisms for Appalachian Basin brine migration into shallow aquifers in NE Pennsylvania, USA. Hydrogeology Journal, 22(5), 1055–1066. doi:10.1007/s10040-014-1125-1.

    Article  CAS  Google Scholar 

  • Maloney, K. O., & Yoxtheimer, D. A. (2012). Production and disposal of waste materials from gas and oil extraction from the Marcellus Shale Play in Pennsylvania. Environmental Practice, 14(4), 278–287. doi:10.1017/s146604661200035x.

    Article  Google Scholar 

  • Olson, J. R., & Hawkins, C. P. (2012). Predicting natural base-flow stream water chemistry in the western United States. Water Resources Research, 48(2), W02504. doi:10.1029/2011wr011088.

    Article  Google Scholar 

  • PADEP. (2015). Roadspreading of brine for dust control and road stabilization (March 2015). New York: Department of Environmental Protection.

    Google Scholar 

  • Poth, C. W. (1962). The occurrence of brine in western Pennsylvania. Pennsylvania Geological Survey Bulletin, M47, 1–53.

    Google Scholar 

  • Rahm, B. G., Bates, J. T., Bertoia, L. R., Galford, A. E., Yoxtheimer, D. A., & Riha, S. J. (2013). Wastewater management and Marcellus Shale gas development: Trends, drivers, and planning implications. Journal of Environmental Management, 120, 105–113. doi:10.1016/j.jenvman.2013.02.029.

    Article  Google Scholar 

  • Raymond, P. A., & Oh, N.-H. (2009). Long term changes of chemical weathering products in rivers heavily impacted from acid mine drainage: Insights on the impact of coal mining on regional and global carbon and sulfur budgets. Earth and Planetary Science Letters, 284(1–2), 50–56. doi:10.1016/j.epsl.2009.04.006.

    Article  CAS  Google Scholar 

  • Rhodes, A. L., & Horton, N. J. (2015). Establishing baseline water quality for household wells within the Marcellus Shale gas region, Susquehanna County, Pennsylvania, USA. Applied Geochemistry, 60, 14–28. doi:10.1016/j.apgeochem.2015.03.004.

    Article  CAS  Google Scholar 

  • Rodhe, H., Dentener, F., & Schulz, M. (2002). The global distribution of acidifying wet deposition. Environmental Science and Technology, 36(20), 4382–4388. doi:10.1021/es020057g.

    Article  CAS  Google Scholar 

  • Sams III, J. I., & Beer, K. M. (2000). Effects of coal-mine drainage on stream water quality in the Allegheny and Monongahela River Basins: Sulfate transport and trends (U. S. D. o. t. Interior, & U. S. G. Survey, Trans.). Water-Resources Investigations Report 99-4208.

  • Skalak, K. J., Engle, M. A., Rowan, E. L., Jolly, G. D., Conko, K. M., Benthem, A. J., et al. (2014). Surface disposal of produced waters in western and southwestern Pennsylvania: Potential for accumulation of alkali-earth elements in sediments. International Journal of Coal Geology, 126, 162–170. doi:10.1016/j.coal.2013.12.001.

    Article  CAS  Google Scholar 

  • Smith, R. A., Alexander, R. B., & Schwarz, G. E. (2003). natural background concentrations of nutrients in streams and rivers of the conterminous United States. Environmental Science and Technology, 37(14), 3039–3047. doi:10.1021/es020663b.

    Article  CAS  Google Scholar 

  • Turekian, K. (1977). Geochemical distribution of elements. In: Encyclopedia of science and technology (4th ed., pp. 627–630). New York: McGraw-Hill.

  • Vidic, R. D., Brantley, S. L., Vandenbossche, J. M., Yoxtheimer, D., & Abad, J. D. (2013). Impact of shale gas development on regional water quality. Science, 340(6134), 1235009. doi:10.1126/science.1235009.

    Article  CAS  Google Scholar 

  • Voutchkova, D. D., Kristiansen, S. M., Hansen, B., Ernstsen, V., Sørensen, B. L., & Esbensen, K. H. (2014). Iodine concentrations in Danish groundwater: Historical data assessment 1933–2011. Environmental Geochemistry and Health, 36(6), 1151–1164. doi:10.1007/s10653-014-9625-4.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was funded from a gift to Penn State for the Pennsylvania State University General Electric Fund for the Center for Collaborative Research on Intelligent Natural Gas Supply Systems. The Shale Network database has been funded by the National Science Foundation RCN-SEES funding (OCE-11-40159), by Penn State, and by the Consortium of Universities for the Advancement of Hydrologic Science, Inc. (CUAHSI). This work is also partially funded by National Science Foundation Grants DMS-1505256 and IIS-1639150.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xianzeng Niu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 3202 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Niu, X., Wendt, A., Li, Z. et al. Detecting the effects of coal mining, acid rain, and natural gas extraction in Appalachian basin streams in Pennsylvania (USA) through analysis of barium and sulfate concentrations. Environ Geochem Health 40, 865–885 (2018). https://doi.org/10.1007/s10653-017-0031-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10653-017-0031-6

Keywords

Navigation