Skip to main content

Advertisement

Log in

Modelling the potential mobility of Cd, Cu, Ni, Pb and Zn in Mollic Fluvisols

  • Original Paper
  • Published:
Environmental Geochemistry and Health Aims and scope Submit manuscript

Abstract

European floodplain soils are frequently contaminated with potentially toxic inorganic substances. We used a multi-surface model to estimate the aqueous concentrations of Cd, Cu, Ni, Pb and Zn in three Mollic Fluvisols from the Central Elbe River (Germany). The model considered complexation in solution and interactions with soil organic matter (SOM), a clay mineral and hydrous Al, Fe and Mn oxides. The amounts of reactive metals were derived from extraction with 0.43 M HNO3. Modelling was carried out as a function of pH (soil pH ± 1.4) because it varies in floodplain soils owing to redox processes that consume or release protons. The fraction of reactive metals, which were dissolved according to the modelling, was predominantly <1%. Depending on soil properties, especially pH and contents of SOM and minerals of the clay fraction, the modelled concentrations partially exceeded the trigger values for the soil–groundwater pathway of the German soil legislation. This differentiation by soil properties was given for Ni, Pb and Zn. On the other hand, Cd was more mobile, i.e., the trigger values were mostly exceeded. Copper represented the opposite, as the modelling did not predict exceeding the trigger values in any horizon. Except for Pb and partially Zn (where oxides were more important), SOM was the most important adsorbent for metals. However, given the special composition and dynamics of SOM in mollic horizons, we suggest further quantitative and qualitative investigations on SOM and on its interaction with metals to improve the prediction of contaminant dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Ad-hoc Arbeitsgruppe Boden. (2005). Bodenkundliche Kartieranleitung. Stuttgart: E. Schweizerbart’sche Verlagsbuchhandlung.

    Google Scholar 

  • Agbenin, J. O., & Olojo, L. A. (2004). Competitive adsorption of copper and zinc by a Bt horizon of a savanna Alfisol as affected by pH and selective removal of hydrous oxides and organic matter. Geoderma, 119, 85–95.

    Article  CAS  Google Scholar 

  • Basta, N. T., & Tabatabai, M. A. (1992). Effect of cropping system on adsorption of metals by soils: III. Competitive adsorption. Soil Science, 153, 331–337.

    Article  CAS  Google Scholar 

  • BBodSchV. (1999). Federal Soil Protection and Contaminated Sites Ordinance—Verordnung zur Durchführung des Bundes-Bodenschutzgesetzes (Bundes-Bodenschutz- und Altlastenverordnung, BBodSchV vom 16.7.1999). BGBl, I.1554.

  • Bonten, L. T. C., Groenenberg, J. E., Meesenburg, H., & de Vries, W. (2011). Using advanced surface complexation models for modelling soil chemistry under forest: Solling forest, Germany. Environmental Pollution, 159, 2831–2839.

    Article  CAS  Google Scholar 

  • Bonten, L. T. C., Groenenberg, J. E., Weng, L., & van Riemsdijk, W. H. (2008). Use of speciation and complexation models to estimate heavy metal sorption in soils. Geoderma, 146, 303–310.

    Article  CAS  Google Scholar 

  • Brümmer, G. (1974). Redoxpotentiale und Redoxprozesse von Mangan-, Eisen- und Schwefelverbindungen in hydromorphen Böden und Sedimenten. Geoderma, 12, 207–222.

    Article  Google Scholar 

  • Dijkstra, J. J., Meeussen, J. C. L., & Comans, R. N. J. (2004). Leaching of heavy metals from contaminated soils: An experimental and modeling study. Environmental Science and Technology, 38, 4390–4395.

    Article  CAS  Google Scholar 

  • Dijkstra, J. J., Meeussen, J. C. L., & Comans, R. N. J. (2009). Evaluation of a generic multisurface sorption model for inorganic soil contaminants. Environmental Science and Technology, 43, 6196–6201.

    Article  CAS  Google Scholar 

  • Du Laing, G., Rinklebe, J., Vandecasteele, B., Meers, E., & Tack, F. M. G. (2009). Trace metal behaviour in estuarine and riverine floodplain soils and sediments: A review. Science of the Total Environment, 407, 3972–3985.

    Article  Google Scholar 

  • Dzombak, D. A., & Morel, F. M. M. (1990). Surface Complexation Modeling: Hydrous ferric oxide. New York: Wiley.

    Google Scholar 

  • FAO (2006). Guidelines for Soil Description. Rome: FAO.

    Google Scholar 

  • Ford, R. G., Kemner, K. M., & Bertsch, P. M. (1999). Influence of sorbate–sorbent interactions on the crystallization of kinetics of nickel- and lead-ferrihydrite coprecipitates. Geochimica et Cosmochimica Acta, 63, 39–48.

    Article  CAS  Google Scholar 

  • Groenenberg, J. E., & Lofts, S. (2014). The use of assemblage models to describe trace element partitioning, speciation, and fate: A review. Environmental Toxicology and Chemistry, 33, 2181–2196.

    Article  CAS  Google Scholar 

  • Gustafsson, J. P. (2013). Visual MINTEQ 3.0 Program. http://www.lwr.kth.se/english/OurSoftWare/Vminteq/index.html.

  • ISO/DIS 17586 (2016). Soil quality—Extraction of trace elements using dilute nitric acid. DRAFT INTERNATIONAL STANDARD. Reference number: ISO/DIS 17586:2016(E). ISO/TC 190/SC 3 Secretariat.

  • IUSS Working Group WRB (2007). World Reference Base for Soil Resources 2006, first update 2007. World Soil Resources Reports No. 103. Rome: FAO.

  • IUSS Working Group WRB (2015). World Reference Base for Soil Resources 2014, update 2015. International soil classification system for naming soils and creating legends for soil maps. World Soil Resources Reports No. 106. Rome: FAO.

  • Karamalidis, A. K., & Dzombak, D. A. (2011). Surface Complexation Modeling: Gibbsite. New York: Wiley.

    Google Scholar 

  • Kinniburgh, D. G., van Riemsdijk, W. H., Koopal, L. K., Borkovec, M., Benedetti, M. F., & Avena, M. J. (1999). Ion binding to natural organic matter: Competition, heterogeneity, stoichiometry and thermodynamic consistency. Colloids and Surfaces A, 151, 147–166.

    Article  CAS  Google Scholar 

  • Kraepiel, A. M. L., Keller, K., & Morel, F. M. M. (1998). On the acid–base chemistry of permanently charged minerals. Environmental Science and Technology, 32, 2829–2838.

    Article  CAS  Google Scholar 

  • Lair, G. J., Zehetner, F., Fiebig, M., Gerzabek, M. H., van Gestel, C. A. M., Hein, T., et al. (2009). How do long-term development and periodical changes of river–floodplain systems affect the fate of contaminants? Results from European rivers. Environmental Pollution, 157, 3336–3346.

    Article  CAS  Google Scholar 

  • Lewis, A. E. (2010). Review of metal sulphide precipitation. Hydrometallurgy, 104, 222–234.

    Article  CAS  Google Scholar 

  • Lu, S. G., & Xu, Q. F. (2009). Competitive adsorption of Cd, Cu, Pb and Zn by different soils of Eastern China. Environmental Geology, 57, 685–693.

    Article  CAS  Google Scholar 

  • Overesch, M., Rinklebe, J., Broll, G., & Neue, H.-U. (2007). Metals and arsenic in soils and corresponding vegetation at Central Elbe river floodplains (Germany). Environmental Pollution, 145, 800–812.

    Article  CAS  Google Scholar 

  • Pan, Y., Bonten, L. T. C., Koopmans, G. F., Song, J., Luo, Y., Temminghoff, E. J. M., et al. (2016). Solubility of trace metals in two contaminated paddy soils exposed to alternating flooding and drainage. Geoderma, 261, 59–69.

    Article  CAS  Google Scholar 

  • Peña, J., Kwon, K. D., Refson, K., Bargar, J. R., & Sposito, G. (2010). Mechanisms of nickel sorption by a bacteriogenic birnessite. Geochimica et Cosmochimica Acta, 74, 3076–3089.

    Article  Google Scholar 

  • Rennert, T., Ghong, N. P., & Rinklebe, J. (2017a). Permanganate-oxidizable soil organic matter in floodplain soils. CATENA, 149, 381–384.

    Article  CAS  Google Scholar 

  • Rennert, T., & Mansfeldt, T. (2006). Release of trace metals, sulfate and complexed cyanide from soils contaminated with gas-purifier wastes: A microcosm study. Environmental Pollution, 139, 86–94.

    Article  CAS  Google Scholar 

  • Rennert, T., Rabus, W., & Rinklebe, J. (2017b). Modelling the concentrations of dissolved contaminants (Cd, Cu, Ni, Pb, Zn) in floodplain soils. Environmental Geochemistry and Health, 39, 331–344.

    Article  CAS  Google Scholar 

  • Rinklebe, J. (2004). Differenzierung von Auenböden der Mittleren Elbe und Quantifizierung des Einflusses von deren Bodenkennwerten auf die mikrobielle Biomasse und die Bodenenzymaktivitäten von β-Glucosidase, Protease und alkalischer Phosphatase. Ph.D. Thesis. With English summary. Martin-Luther-Universität Halle-Wittenberg. Germany (113 pp. and Appendix).

  • Rinklebe, J., Franke, C., & Neue, H.-U. (2007). Aggregation of floodplain soils as an instrument for predicting concentrations of nutrients and pollutants. Geoderma, 141, 210–223.

    Article  CAS  Google Scholar 

  • Rinklebe, J., Shaheen, S. M., Schröter, F., & Rennert, T. (2016). Exploiting biogeochemical and spectroscopic techniques to assess the geochemical distribution and release dynamics of chromium and lead in a contaminated soil. Chemosphere, 150, 390–397.

    Article  CAS  Google Scholar 

  • Rinklebe, J., Stubbe, A., Staerk, H.-J., Wennrich, R., & Neue, H.-U. (2005). Factors controlling the dynamics of As, Cd, Zn and Pb in alluvial soils of the Elbe river (Germany). In W. G. Lyon, J. Hong, & R. K. Reddy (Eds.), Proceedings of environmental science and technology (pp. 265–270). New Orleans: American Science Press.

    Google Scholar 

  • Scheinost, A. C., Kretzschmar, R., Pfister, S., & Roberts, D. R. (2002). Combining selective sequential extractions, X-ray absorption spectroscopy, and principal component analysis for quantitative zinc speciation in soil. Environmental Science and Technology, 36, 5021–5028.

    Article  CAS  Google Scholar 

  • Schröder, T. J., van Riemsdijk, W. H., van der Zee, S. E. A. T. M., & Vink, J. P. M. (2008). Monitoring and modelling of the solid-solution partitioning of metals and As in a river floodplain redox sequence. Applied Geochemistry, 23, 2350–2363.

    Article  Google Scholar 

  • Schulz-Zunkel, C., Rinklebe, J., & Bork, H.-R. (2015). Trace element release patterns from three floodplain soils under simulated oxidized-reduced cycles. Ecological Engineering, 83, 485–495.

    Article  Google Scholar 

  • Schwertmann, U. (1964). Differenzierung der Eisenoxide des Bodens durch Extraktion mit saurer Ammoniumoxalat-Lösung. Zeitschrift für Pflanzenernährung, Düngung und Bodenkunde, 105, 194–202.

    Article  CAS  Google Scholar 

  • Schwertmann, U., Süsser, P., & Nätscher, L. (1987). Protonenpuffersubstanzen in Böden. Zeitschrift für Pflanzenernährung und Bodenkunde, 150, 174–178.

    Article  CAS  Google Scholar 

  • Shaheen, S. M., Frohne, T., White, J. R., DeLaune, R. D., & Rinklebe, J. (2017). Redox-induced mobilization of copper, selenium, and zinc in deltaic soils originating from Mississippi (U.S.A.) and Nile (Egypt) River Deltas: A better understanding of biogeochemical processes for safe environmental management. Journal of Environmental Management, 186, 131–140.

    Article  CAS  Google Scholar 

  • Shaheen, S. M., & Rinklebe, J. (2014). Geochemical fractions of chromium, copper, and zinc and their vertical distribution in floodplain soil profiles along the Central Elbe River, Germany. Geoderma, 228–229, 142–159.

    Article  Google Scholar 

  • Tonkin, J. W., Balistrieri, L. S., & Murray, J. W. (2004). Modeling sorption of divalent metal cations on hydrous manganese oxide using the diffuse double layer model. Applied Geochemistry, 19, 29–53.

    Article  CAS  Google Scholar 

  • Weng, L., Temminghoff, E. J. M., Lofts, S., Tipping, E., & van Riemsdijk, W. H. (2002). Complexation with dissolved organic matter and solubility control of heavy metals in a sandy soil. Environmental Science and Technology, 36, 4804–4810.

    Article  CAS  Google Scholar 

  • Weng, L., Temminghoff, E. J. M., & van Riemsdijk, W. H. (2001). Contribution of individual sorbents to the control of heavy metal activity in a sandy soil. Environmental Science and Technology, 35, 4436–4443.

    Article  CAS  Google Scholar 

  • Wittmann, O., Blume, H. P., & Filipinski, M. (1997). Soil classification of the Federal Republic of Germany. Mitteilungen der Deutschen Bodenkundlichen Gesellschaft, 84, 253–275.

    Google Scholar 

  • Yu, K., Böhme, F., Rinklebe, J., Neue, H.-U., & DeLaune, R. D. (2007). Major biogeochemical processes in rice soils—A microcosm incubation from reducing to oxidizing conditions. Soil Science Society of America Journal, 71, 1406–1417.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Annerose Böttcher (Univ. Hohenheim) for soil analyses.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thilo Rennert.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rennert, T., Rinklebe, J. Modelling the potential mobility of Cd, Cu, Ni, Pb and Zn in Mollic Fluvisols. Environ Geochem Health 39, 1291–1304 (2017). https://doi.org/10.1007/s10653-017-9988-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10653-017-9988-4

Keywords

Navigation