Skip to main content

Advertisement

Log in

Potential toxicity of trace elements and nanomaterials to Chinese cabbage in arsenic- and lead-contaminated soil amended with biochars

  • Original Paper
  • Published:
Environmental Geochemistry and Health Aims and scope Submit manuscript

A Correction to this article was published on 27 December 2017

This article has been updated

Abstract

To our knowledge, this is the first report on exploring the interactive effects of various biochars (BCs) and nanomaterials (NMs) on plant growth and bioavailability of trace elements in soil. This study evaluated the bioavailability and toxicity of arsenic (As), lead (Pb), and NMs to cabbage plants. The BCs were produced from rice husk (RB), sewage sludge, and bamboo wood (WB). The BCs at 2.5 and 5% (w w−1), NMs for removing As (NMs-As) and heavy metals (NMs-HM) at 3000 mg kg−1, and multi-walled carbon nanotubes (CNT) at 1000 mg kg−1 were applied in bioassay and incubation experiments (40 days), along with the unamended soil as the control. Results showed that the NMs-As and NMs-HM decreased seed germination at 3 days after sowing; however, their toxicity was eliminated by BCs. Growth parameters of cabbage revealed that the CNT was the most toxic NMs, as it was translocated in root and leaf cells, which was confirmed by transmission electron microscopic images. Bioavailable Pb was reduced by 1.2–3.8-folds in all amended rhizosphere and bulk soils. Amendments of 2.5% WB + NMs-As and 2.5% RB + NMs-As significantly decreased both bioavailable As and Pb.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Change history

  • 27 December 2017

    Unfortunately, in the original publication of the article, Prof. Yong Sik Ok’s affiliation was incorrectly published. The author’s affiliation is as follows.

References

  • Abid, M., Niazi, N. K., Bibi, I., Farooqi, A., Ok, Y. S., Kunhikrishnan, A., et al. (2016). Arsenic (V) biosorption by charred orange peel in aqueous environments. International Journal of Phytoremediation, 18(5), 442–449.

    Article  CAS  Google Scholar 

  • Ahmad, M., Hashimoto, Y., Moon, D. H., Lee, S. S., & Ok, Y. S. (2012a). Immobilization of lead in a Korean military shooting range soil using eggshell waste: an integrated mechanistic approach. Journal of Hazardous Materials, 209, 392–401.

    Article  CAS  Google Scholar 

  • Ahmad, M., Lee, S. S., Yang, J. E., Ro, H.-M., Lee, Y. H., & Ok, Y. S. (2012b). Effects of soil dilution and amendments (mussel shell, cow bone, and biochar) on Pb availability and phytotoxicity in military shooting range soil. Ecotoxicology and Environmental Safety, 79, 225–231.

    Article  CAS  Google Scholar 

  • Ahmad, M., Moon, D. H., Lim, K. J., Shope, C. L., Lee, S. S., Usman, A. R., et al. (2012c). An assessment of the utilization of waste resources for the immobilization of Pb and Cu in the soil from a Korean military shooting range. Environmental Earth Sciences, 67(4), 1023–1031.

    Article  CAS  Google Scholar 

  • Ahmad, M., Ok, Y. S., Rajapaksha, A. U., Lim, J. E., Kim, B.-Y., Ahn, J.-H., et al. (2016). Lead and copper immobilization in a shooting range soil using soybean stover-and pine needle-derived biochars: Chemical, microbial and spectroscopic assessments. Journal of Hazardous Materials, 301, 179–186.

    Article  CAS  Google Scholar 

  • Ahmad, M., Rajapaksha, A. U., Lim, J. E., Zhang, M., Bolan, N., Mohan, D., et al. (2014). Biochar as a sorbent for contaminant management in soil and water: A review. Chemosphere, 99, 19–33.

    Article  CAS  Google Scholar 

  • Almaroai, Y. A., Usman, A. R., Ahmad, M., Moon, D. H., Cho, J.-S., Joo, Y. K., et al. (2014a). Effects of biochar, cow bone, and eggshell on Pb availability to maize in contaminated soil irrigated with saline water. Environmental Earth Sciences, 71(3), 1289–1296.

    Article  CAS  Google Scholar 

  • Almaroai, Y. A., Vithanage, M., Rajapaksha, A. U., Lee, S. S., Dou, X., Lee, Y. H., et al. (2014b). Natural and synthesised iron-rich amendments for As and Pb immobilisation in agricultural soil. Chemistry and Ecology, 30(3), 267–279.

    Article  CAS  Google Scholar 

  • Atkinson, C. J., Fitzgerald, J. D., & Hipps, N. A. (2010). Potential mechanisms for achieving agricultural benefits from biochar application to temperate soils: A review. Plant and Soil, 337(1–2), 1–18.

    Article  CAS  Google Scholar 

  • Awad, Y. M., Abdelhafez, A. A., Ahmad, M., Lee, S.-S., Kim, R.-Y., Sung, J.-K., et al. (2010). Synthesis of nanoscale zerovalent iron particle and its application to Cr(VI) removal from aqueous solutions. Korean Journal of Environmental Agriculture, 29(4), 402–407.

    Article  Google Scholar 

  • Awad, Y. M., Lee, S. E., Ahmed, M. B. M., Vu, N. T., Farooq, M., Kim, I. S., et al. (2017). Biochar, a potential hydroponic growth substrate, enhances the nutritional status and growth of leafy vegetables. Journal of Cleaner Production, 156, 581–588.

    Article  CAS  Google Scholar 

  • Bandara, T., Herath, I., Kumarathilaka, P., Hseu, Z.-Y., Ok, Y. S., & Vithanage, M. (2016). Efficacy of woody biomass and biochar for alleviating heavy metal bioavailability in serpentine soil. Environmental Geochemistry and Health, 39(2), 391–401.

    Article  CAS  Google Scholar 

  • Bandyopadhyaya, R., Nativ-Roth, E., Regev, O., & Yerushalmi-Rozen, R. (2002). Stabilization of individual carbon nanotubes in aqueous solutions. Nano Letters, 2(1), 25–28.

    Article  CAS  Google Scholar 

  • Beesley, L., & Marmiroli, M. (2011). The immobilisation and retention of soluble arsenic, cadmium and zinc by biochar. Environmental Pollution, 159(2), 474–480.

    Article  CAS  Google Scholar 

  • Beesley, L., Moreno-Jiménez, E., Gomez-Eyles, J. L., Harris, E., Robinson, B., & Sizmur, T. (2011). A review of biochars’ potential role in the remediation, revegetation and restoration of contaminated soils. Environmental Pollution, 159(12), 3269–3282.

    Article  CAS  Google Scholar 

  • Beiyuan, J., Awad, Y. M., Beckers, F., Tsang, D. C., Ok, Y. S., & Rinklebe, J. (2017). Mobility and phytoavailability of As and Pb in a contaminated soil using pine sawdust biochar under systematic change of redox conditions. Chemosphere, 178, 110–118.

    Article  CAS  Google Scholar 

  • Bernal, M., Clemente, R., & Walker, D. (2007). The role of organic amendments in the bioremediation of heavy metal-polluted soils. In A. B. Gore (Ed.), Environmental research at the leading edge (pp. 1–57). New York: Nova Science Publisher, Inc.

    Google Scholar 

  • Cañas, J. E., Long, M., Nations, S., Vadan, R., Dai, L., Luo, M., et al. (2008). Effects of functionalized and nonfunctionalized single‐walled carbon nanotubes on root elongation of select crop species. Environmental Toxicology and Chemistry, 27(9), 1922–1931.

    Article  Google Scholar 

  • Cao, X., Ma, L., Liang, Y., Gao, B., & Harris, W. (2011). Simultaneous immobilization of lead and atrazine in contaminated soils using dairy-manure biochar. Environmental Science & Technology, 45(11), 4884–4889.

    Article  CAS  Google Scholar 

  • Chaney, R. L., Kim, W. I., Kunhikrishnan, A., Yang, J. E., & Ok, Y. S. (2016). Integrated management strategies for arsenic and cadmium in rice paddy environments. Geoderma, 270, 1–2.

    Article  Google Scholar 

  • Clough, T. J., Condron, L. M., Kammann, C., & Müller, C. (2013). A review of biochar and soil nitrogen dynamics. Agronomy, 3(2), 275–293.

    Article  CAS  Google Scholar 

  • Deedar, N., & Aslam, I. (2009). Evaluation of the adsorption potential of titanium dioxide nanoparticles for arsenic removal. Journal of Environmental Sciences, 21(3), 402–408.

    Article  CAS  Google Scholar 

  • Frohne, T., Rinklebe, J., & Diaz-Bone, R. A. (2014). Contamination of floodplain soils along the Wupper River, Germany, with As Co, Cu, Ni, Sb, and Zn and the impact of pre-definite redox variations on the mobility of these elements. Soil and Sediment Contamination: An International Journal, 23(7), 779–799.

    Article  CAS  Google Scholar 

  • Giammar, D. E., Maus, C. J., & Xie, L. (2007). Effects of particle size and crystalline phase on lead adsorption to titanium dioxide nanoparticles. Environmental Engineering Science, 24(1), 85–95.

    Article  CAS  Google Scholar 

  • Greene, J., Bartels, C., Warren-Hicks, W., Parkhurst, B., & Linder, G. (1988). Protocols for short-term toxicity screening of hazardous-waste sites. Environmental Protection Agency, Corvallis, OR (USA). New York: Environmental Research Lab.

    Google Scholar 

  • Hartley, W., Dickinson, N. M., Riby, P., & Lepp, N. W. (2009). Arsenic mobility in brownfield soils amended with green waste compost or biochar and planted with Miscanthus. Environmental Pollution, 157(10), 2654–2662.

    Article  CAS  Google Scholar 

  • Igalavithana, A. D., Lee, S.-E., Lee, Y. H., Tsang, D. C., Rinklebe, J., Kwon, E. E., et al. (2017). Heavy metal immobilization and microbial community abundance by vegetable waste and pine cone biochar of agricultural soils. Chemosphere, 174, 593–603.

    Article  CAS  Google Scholar 

  • Jade 5. (1999). XRD Pattern Processing. Irvine, CA: Materials Data Inc.

    Google Scholar 

  • Joseph, S., & Lehmann, J. (2009). Biochar for environmental management: Science and technology. London: Earthscan.

    Google Scholar 

  • Karami, N., Clemente, R., Moreno-Jiménez, E., Lepp, N. W., & Beesley, L. (2011). Efficiency of green waste compost and biochar soil amendments for reducing lead and copper mobility and uptake to ryegrass. Journal of Hazardous Materials, 191(1), 41–48.

    Article  CAS  Google Scholar 

  • Kern, J., Mukhina, I., Dicke, C., Lanza, G., & Kalderis, D. (2015). Effects of rice husks and their chars from hydrothermal carbonization on the germination rate and root length of Lepidium sativum. In EGU general assembly conference abstracts, 2015 (Vol. 17, p. 10002).

  • Khodakovskaya, M., Dervishi, E., Mahmood, M., Xu, Y., Li, Z., Watanabe, F., et al. (2009). Carbon nanotubes are able to penetrate plant seed coat and dramatically affect seed germination and plant growth. ACS Nano, 3(10), 3221–3227.

    Article  CAS  Google Scholar 

  • Khodakovskaya, M. V., de Silva, K., Nedosekin, D. A., Dervishi, E., Biris, A. S., Shashkov, E. V., et al. (2011). Complex genetic, photothermal, and photoacoustic analysis of nanoparticle-plant interactions. Proceedings of the National Academy of Sciences, 108(3), 1028–1033.

    Article  CAS  Google Scholar 

  • Khodakovskaya, M. V., Kim, B. S., Kim, J. N., Alimohammadi, M., Dervishi, E., Mustafa, T., et al. (2013). Carbon nanotubes as plant growth regulators: effects on tomato growth, reproductive system, and soil microbial community. Small, 9(1), 115–123.

    Article  CAS  Google Scholar 

  • Kim, H.-S., Kim, K.-R., Kim, H.-J., Yoon, J.-H., Yang, J. E., Ok, Y. S., et al. (2015). Effect of biochar on heavy metal immobilization and uptake by lettuce (Lactuca sativa L.) in agricultural soil. Environmental Earth Sciences, 74(2), 1249–1259.

    Article  CAS  Google Scholar 

  • Kim, H. S., Kim, K. R., Yang, J. E., Ok, Y. S., Kim, W. I., Kunhikrishnan, A., et al. (2017). Amelioration of horticultural growing media properties through rice hull biochar incorporation. Waste and Biomass Valorization, 8(2), 483–492.

    Article  CAS  Google Scholar 

  • Klaine, S. J., Alvarez, P. J., Batley, G. E., Fernandes, T. F., Handy, R. D., Lyon, D. Y., et al. (2008). Nanomaterials in the environment: Behavior, fate, bioavailability, and effects. Environmental Toxicology and Chemistry, 27(9), 1825–1851.

    Article  CAS  Google Scholar 

  • Larue, C., Pinault, M., Czarny, B., Georgin, D., Jaillard, D., Bendiab, N., et al. (2012). Quantitative evaluation of multi-walled carbon nanotube uptake in wheat and rapeseed. Journal of Hazardous Materials, 227, 155–163.

    Article  CAS  Google Scholar 

  • Lee, S. S., Shah, H. S., Awad, Y. M., Kumar, S., & Ok, Y. S. (2015). Synergy effects of biochar and polyacrylamide on plants growth and soil erosion control. Environmental Earth Sciences, 74(3), 2463–2473.

    Article  CAS  Google Scholar 

  • Lehmann, J., Kuzyakov, Y., Pan, G., & Ok, Y. S. (2015). Biochars and the plant-soil interface. Plant and Soil, 395, 1–5.

    Article  CAS  Google Scholar 

  • Lehmann, J., Rillig, M. C., Thies, J., Masiello, C. A., Hockaday, W. C., & Crowley, D. (2011). Biochar effects on soil biota—A review. Soil Biology and Biochemistry, 43(9), 1812–1836.

    Article  CAS  Google Scholar 

  • Liang, S.-X., Jin, Y., Liu, W., Li, X., Shen, S.-G., & Ding, L. (2017). Feasibility of Pb phytoextraction using nano-materials assisted ryegrass: Results of a one-year field-scale experiment. Journal of Environmental Management, 190, 170–175.

    Article  CAS  Google Scholar 

  • Liu, X., Zhang, A., Ji, C., Joseph, S., Bian, R., Li, L., et al. (2013). Biochar’s effect on crop productivity and the dependence on experimental conditions—A meta-analysis of literature data. Plant and Soil, 373(1–2), 583–594.

    Article  CAS  Google Scholar 

  • Ma, X., Geiser-Lee, J., Deng, Y., & Kolmakov, A. (2010). Interactions between engineered nanoparticles (ENPs) and plants: Phytotoxicity, uptake and accumulation. Science of the Total Environment, 408(16), 3053–3061.

    Article  CAS  Google Scholar 

  • McBeath, A. V., Smernik, R. J., Krull, E. S., & Lehmann, J. (2014). The influence of feedstock and production temperature on biochar carbon chemistry: A solid-state 13C NMR study. Biomass and Bioenergy, 60, 121–129.

    Article  CAS  Google Scholar 

  • Miralles, P., Church, T. L., & Harris, A. T. (2012). Toxicity, uptake, and translocation of engineered nanomaterials in vascular plants. Environmental Science and Technology, 46(17), 9224–9239.

    Article  CAS  Google Scholar 

  • Moon, D. H., Cheong, K. H., Koutsospyros, A., Chang, Y.-Y., Hyun, S., Ok, Y. S., et al. (2016). Assessment of waste oyster shells and coal mine drainage sludge for the stabilization of As-, Pb-, and Cu-contaminated soil. Environmental Science and Pollution Research, 23(3), 2362–2370.

    Article  CAS  Google Scholar 

  • Moon, D. H., Wazne, M., Cheong, K. H., Chang, Y.-Y., Baek, K., Ok, Y. S., et al. (2015). Stabilization of As-, Pb-, and Cu-contaminated soil using calcined oyster shells and steel slag. Environmental Science and Pollution Research, 22(14), 11162–11169.

    Article  CAS  Google Scholar 

  • Ok, Y. S., Chang, S. X., Gao, B., & Chung, H.-J. (2015). SMART biochar technology—A shifting paradigm towards advanced materials and healthcare research. Environmental Technology and Innovation, 4, 206–209.

    Article  Google Scholar 

  • Ok, Y. S., Oh, S. E., Ahmad, M., Hyun, S., Kim, K. R., Moon, D. H., et al. (2010). Effects of natural and calcined oyster shells on Cd and Pb immobilization in contaminated soils. Environmental Earth Sciences, 61(6), 1301–1308.

    Article  CAS  Google Scholar 

  • Oleszczuk, P., Ćwikła-Bundyra, W., Bogusz, A., Skwarek, E., & Ok, Y. S. (2016). Characterization of nanoparticles of biochars from different biomass. Journal of Analytical and Applied Pyrolysis, 121, 165–172.

    Article  CAS  Google Scholar 

  • Otte, M., Haarsma, M., Broekman, R., & Rozema, J. (1993). Relation between heavy metal concentrations in salt marsh plants and soil. Environmental Pollution, 82(1), 13–22.

    Article  CAS  Google Scholar 

  • Pan, B., & Xing, B. (2012). Applications and implications of manufactured nanoparticles in soils: A review. European Journal of Soil Science, 63(4), 437–456.

    Article  CAS  Google Scholar 

  • Paz-Ferreiro, J., Gascó, G., Gutiérrez, B., & Méndez, A. (2012). Soil biochemical activities and the geometric mean of enzyme activities after application of sewage sludge and sewage sludge biochar to soil. Biology and Fertility of Soils, 48(5), 511–517.

    Article  Google Scholar 

  • Purwanto, A., Hidayat, D., Terashi, Y., & Okuyama, K. (2008). Synthesis of monophasic Ca x Ba (1 − x) TiO3 nanoparticles with high Ca content (x > 23%) and their photoluminescence properties. Chemistry of Materials, 20(24), 7440–7446.

    Article  CAS  Google Scholar 

  • Rajapaksha, A. U., Ahmad, M., Vithanage, M., Kim, K.-R., Chang, J. Y., Lee, S. S., et al. (2015). The role of biochar, natural iron oxides, and nanomaterials as soil amendments for immobilizing metals in shooting range soil. Environmental Geochemistry and Health, 37(6), 931–942.

    Article  CAS  Google Scholar 

  • Rajapaksha, A. U., Chen, S. S., Tsang, D. C., Zhang, M., Vithanage, M., Mandal, S., et al. (2016). Engineered/designer biochar for contaminant removal/immobilization from soil and water: Potential and implication of biochar modification. Chemosphere, 148, 276–291.

    Article  CAS  Google Scholar 

  • Rajkovich, S., Enders, A., Hanley, K., Hyland, C., Zimmerman, A. R., & Lehmann, J. (2012). Corn growth and nitrogen nutrition after additions of biochars with varying properties to a temperate soil. Biology and Fertility of Soils, 48(3), 271–284.

    Article  CAS  Google Scholar 

  • Rinklebe, J., Shaheen, S. M., & Frohne, T. (2016). Amendment of biochar reduces the release of toxic elements under dynamic redox conditions in a contaminated floodplain soil. Chemosphere, 142, 41–47.

    Article  CAS  Google Scholar 

  • Rizwan, M., Ali, S., Qayyum, M. F., Ibrahim, M., Zia-ur-Rehman, M., Abbas, T., et al. (2016). Mechanisms of biochar-mediated alleviation of toxicity of trace elements in plants: A critical review. Environmental Science and Pollution Research, 23(3), 2230–2248.

    Article  CAS  Google Scholar 

  • Rizwan, M., Ali, S., Qayyum, M. F., Ok, Y. S., Adrees, M., Ibrahim, M., et al. (2017). Effect of metal and metal oxide nanoparticles on growth and physiology of globally important food crops: A critical review. Journal of Hazardous Materials, 322, 2–16.

    Article  CAS  Google Scholar 

  • SAS. (2004). SAS/STAT user’s guide, version 9.1. Cary, NC: SAS Institute Inc.

  • Schimmelpfennig, S., & Glaser, B. (2012). One step forward toward characterization: Some important material properties to distinguish biochars. Journal of Environmental Quality, 41(4), 1001–1013.

    Article  CAS  Google Scholar 

  • Seneviratne, M., Weerasundara, L., Ok, Y. S., Rinklebe, J., & Vithanage, M. (2017). Phytotoxicity attenuation in Vigna radiata under heavy metal stress at the presence of biochar and N fixing bacteria. Journal of Environmental Management, 186, 293–300.

    Article  CAS  Google Scholar 

  • Servin, A. D., De la Torre-Roche, R., Castillo-Michel, H., Pagano, L., Hawthorne, J., Musante, C., et al. (2017). Exposure of agricultural crops to nanoparticle CeO2 in biochar-amended soil. Plant Physiology and Biochemistry, 110, 147–157.

    Article  CAS  Google Scholar 

  • Shainberg, I., Sumner, M., Miller, W., Farina, M., Pavan, M., & Fey, M. (1989). Use of gypsum on soils: A review. In B. A. Stewart (Ed.), Advances in soil science (pp. 1–111). Berlin: Springer.

    Google Scholar 

  • Shieldrick, B., & Wang, C. (1993). Particle size distribution. Soil sampling and methods of analysis. In M. R. Carter (Ed.), Canadian society of soil science (pp. 499–513). Boca Raton, FL: Lewis Publishers.

    Google Scholar 

  • Stefaniuk, M., Oleszczuk, P., & Ok, Y. S. (2016). Review on nano zerovalent iron (nZVI): From synthesis to environmental applications. Chemical Engineering Journal, 287, 618–632.

    Article  CAS  Google Scholar 

  • Sumner, M., Miller, W., Sparks, D., Page, A., Helmke, P., Loeppert, R., et al. (1996). Cation exchange capacity and exchange coefficients. In R. S. Swift & D. L. Sparks (Eds.), Methods of soil analysis. Part 3-chemical methods. Volume 5 of Soil Science Society of America books series (pp. 1201–1229). Madison, WI: Soil Science Society of America, American Society of Agronomy.

  • USEPA. (1995). Method 3051: Microwave assisted acid digestion of siliceous and organically based matrices. In: SW-846 (3rd Eds.), Test methods for evaluating solid waste: Physical/chemical methods, update III, 1995 (pp. 122–142). Washington, DC: United States Environmental Protection Agency.

  • Usman, A., Kuzyakov, Y., & Stahr, K. (2005). Effect of clay minerals on immobilization of heavy metals and microbial activity in a sewage sludge-contaminated soil. Journal of Soils and Sediments, 5(4), 245–252.

    Article  CAS  Google Scholar 

  • Van Zwieten, L., Kimber, S., Morris, S., Chan, K., Downie, A., Rust, J., et al. (2010). Effects of biochar from slow pyrolysis of papermill waste on agronomic performance and soil fertility. Plant and Soil, 327(1–2), 235–246.

    Article  CAS  Google Scholar 

  • Vangronsveld, J., Herzig, R., Weyens, N., Boulet, J., Adriaensen, K., Ruttens, A., et al. (2009). Phytoremediation of contaminated soils and groundwater: Lessons from the field. Environmental Science and Pollution Research, 16(7), 765–794.

    Article  CAS  Google Scholar 

  • Veihmeyer, F., & Hendrickson, A. (1931). The moisture equivalent as a measure of the field capacity of soils. Soil Science, 32(3), 181–194.

    Article  CAS  Google Scholar 

  • Wang, C., Liu, H., Chen, J., Tian, Y., Shi, J., Li, D., et al. (2014). Carboxylated multi-walled carbon nanotubes aggravated biochemical and subcellular damages in leaves of broad bean (Vicia faba L.) seedlings under combined stress of lead and cadmium. Journal of Hazardous Materials, 274, 404–412.

    Article  CAS  Google Scholar 

  • Wang, W.-J., He, H.-S., Zu, Y.-G., Guan, Y., Liu, Z.-G., Zhang, Z.-H., et al. (2011). Addition of HPMA affects seed germination, plant growth and properties of heavy saline-alkali soil in northeastern China: Comparison with other agents and determination of the mechanism. Plant and Soil, 339(1–2), 177–191.

    Article  CAS  Google Scholar 

  • Wu, H., Che, X., Ding, Z., Hu, X., Creamer, A. E., Chen, H., et al. (2016). Release of soluble elements from biochars derived from various biomass feedstocks. Environmental Science and Pollution Research, 23(2), 1905–1915.

    Article  CAS  Google Scholar 

  • Xu, Y., Fang, Z., & Tsang, E. P. (2016). In situ immobilization of cadmium in soil by stabilized biochar-supported iron phosphate nanoparticles. Environmental Science and Pollution Research, 23(19), 19164–19172.

    Article  CAS  Google Scholar 

  • Zhang, W. X., & Elliott, D. W. (2006). Applications of iron nanoparticles for groundwater remediation. Remediation Journal, 16(2), 7–21.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Research Foundation of Korea (NRF) Grant funded by the Korea government (NRF-2015R1A2A2A11001432).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yong Sik Ok or Sang Soo Lee.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 102 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Awad, Y.M., Vithanage, M., Niazi, N.K. et al. Potential toxicity of trace elements and nanomaterials to Chinese cabbage in arsenic- and lead-contaminated soil amended with biochars. Environ Geochem Health 41, 1777–1791 (2019). https://doi.org/10.1007/s10653-017-9989-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10653-017-9989-3

Keywords

Navigation