Skip to main content
Log in

Evaluating the efficiency of sediment metal pollution indices in interpreting the pollution of Haraz River sediments, southern Caspian Sea basin

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

The Haraz River is one of the most significant rivers in the southern Caspian Sea basin. Towards the estuary, the river receives discharges of industrial, agricultural, and urban wastes. In the present investigation, bulk concentrations of Cu, Zn, As, Cd, Pb, Fe, Ni, Cr, Co, and Sr in Haraz River (Iran) bed sediments were measured from several sample locations. In addition, association of studied metals with various sedimentary phases was assessed to determine the proportions of metals in different forms. The intensity of sediment contamination was evaluated using an enrichment factor (EF), geo-accumulation index (Igeo), and a newly developed pollution index (Ipoll). Both EF and Igeo formulae compare present concentrations of metals to their background levels in crust and shale, respectively. In a specific area with its own geological background like Haraz River water basin where naturally high concentrations of metals may be found, such a comparison may lead to biased conclusions regarding levels of anthropogenic contamination. Accordingly, chemical partitioning results are substituted for the mean crust and shale levels in the new index (Ipoll). The Pearson correlation coefficient between the anthropogenic portion of metallic pollution in Haraz river-bed sediments with Ipoll showed much more value in comparison with those of geochemical accumulation index and enrichment factor. The order of metals introduced by anthropogenic activities are as follows: Sr > Pb > Co > Cd > Zn > Cu > Ni > As > Cr > Fe. The results showed relatively higher concentrations of Cd, As, Sr, and Pb in comparison with those of shale. However, based on the chemical partitioning of metals, it is found that Sr, Pb, Co, and Cd are the most mobile metals. In spite of the high As concentrations in sediments, it is not likely that this element is a major hazard for the aquatic environment since it is found mainly in the residual fraction. Also, Fe, Cr, and Ni are present in the greatest percentages in the residual fraction, which implies that these metals are strongly linked to the sediments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Adekola, F. A., & Eletta, O. A. A. (2007). A study of heavy metal pollution of Asa river, Ilorin, Nigeria; Trace metal monitoring and geochemistry. Environmental Monitoring Assessment, 125, 157–163.

    Article  CAS  Google Scholar 

  • Ankley, G. T., Di Toro, D. M., Hansen, D. J., & Berry, W. J. (1996). Technical basis and proposal for deriving sediment quality criteria for metals. Environmental Toxicology and Chemistry, 15, 2056–2066.

    Article  CAS  Google Scholar 

  • Andrade, E. M., Palacio, H. A. Q., Souza, I. H., Leao, R. A. O., Guerreiro, M. J. (2008). Land use effects in groundwater composition of an alluvial aquifer (Trussu River, Brazil) by multivariate techniques. Environmental Research, 106, 170–177.

    Article  CAS  Google Scholar 

  • Axen, G. J., Lam, P. S., Grove, M., Stockli, D. F., & Hassanzadeh, J. (2001). Exhumation of the west-central Alborz Mountains, Iran, Caspian subsidence, and collision- related tectonics. Geology, 29, 9–562.

    Article  Google Scholar 

  • Baba, A., & Gungor, T. (2002). Influence of gold mine on groundwater quality (Efemcukuru, Izmir, Turkey). Environmental Geology, 41, 621–627.

    Article  CAS  Google Scholar 

  • Berberian, M. (1983). The southern Caspian: A compressional depression floored by a trapped, modified oceanic crust. Canadian Journal of Earth Science, 20, 163–183.

    Google Scholar 

  • Boughriet, A., Quddance, B., Fischer, J. C., Wartel, M., & Leman, G. (1992). Variability of dissolved Mn and Zn in the Seine Estuary and chemical speciation of these metals in suspended matter. Water Research, 26, 1359–1378.

    Article  CAS  Google Scholar 

  • Chartier, M., Mercier, G., & Blais, J. F. (2001). Partitioning of trace metals before and after biological removal of metals from sediments. Water Research, 35(6), 1435–1444.

    Article  CAS  Google Scholar 

  • Chester, R., & Hughes, R. M. (1967). A chemical technique for the separation of ferro-manganese minerals, carbonate minerals and adsorbed trace elements from pelagic Sediment. Chemical Geology, 2, 249–262.

    Article  CAS  Google Scholar 

  • Das, A. K., Chakraborty, R., Cervera, M. L., & De la Guardia, M. (1995). Metal speciation in solid matrices. Talanta, 42, 1007–1030.

    Article  CAS  Google Scholar 

  • Datta, D. K., & Subramanian, V. (1998). Distribution and fractionation of heavy metals in the surface sediments of the Ganges–Brahmaputra–Meghna river system in the Bengal basin. Environmental Geology, 36(1–2), 93–101.

    Article  CAS  Google Scholar 

  • Davidson, J., Hassanzadeh, J., Berzins, R., Stockli, D. F., Bashukooh, B., Turrin, B., & Pandamouz, A. (2004). The geology of Damavand volcano, Alborz Mountains, northern Iran. Geological Society of America Bulletin, 116, 16–29.

    Article  CAS  Google Scholar 

  • Davies, C. A. L., Tomlinson K., & Stephenson, T. (1991). Heavy metals in river Tees estuary sediments. Environmental Technology, 12(11), 961–972.

    Article  CAS  Google Scholar 

  • Degryse, F., Smolders, E., & Merckx, R. (2006). Labile Cd complexes increase Cd availability to plants. Environmental Science & Technology, 40, 830–836.

    Article  CAS  Google Scholar 

  • Dehghani, G. A., & Makris, J. (1984). The gravity field and crustal structure of Iran. Neues Jahrbuch fur Geologie und Palaontologie Abhandlungen, 168, 215–229.

    Google Scholar 

  • Dixon, W. J. (1992). BMDP statistical software manual. Berkeley: University of California Press, pp. 201–225 (Chapter 7D).

    Google Scholar 

  • Elsokkary, L. H., & Muller, G. (1990). Assessment and speciation of chromium, nickel, lead and cadmium in the sediemts of the river Nile, Egypt. Science of the Total Environment, 97–98, 455–463.

    Article  Google Scholar 

  • Forstner, U., Ahlf, W., Calmano, W., & Kersten, M. (1990). Sediment criteria development. In D. Helling, P. Rothe, U. Forstner, & P. Stoffers (Eds.), Sediments and environmental geochemistry. Springer.

  • Forestner, U., & Muller, G. (1973). Heavy metal accumulation in river sediments: A response to environmental pollution. Geoforum, 14, 53–61.

    Article  Google Scholar 

  • Forstner, U., & Wittmann, G. T. W. (1981). Metal pollution in aquatic environment. Berlin: Springer.

    Google Scholar 

  • Foster, P., & Hunt, D. T. E. (1975). Geochemistry of surface sediments in an acid stream estuary. Marine Geology, 18, 13–21.

    Article  Google Scholar 

  • Gonzalez, A. E., Rodriguez, M. T., Sanchez, J. C. J., Espinosa, A. J. F., & De La Rosa, F. J. B. (2000). Assessment of metals in sediments in a tributary of Guadalquivir river (Spain). Heavy metal partitioning and relation between the water and sediment system. Water, Air and Soil Pollution, 121(1–4), 11–29.

    Article  CAS  Google Scholar 

  • Gonzalez-Macias, C., Schifter, I., Lluch-cota, D. B., Mendez-Rodriguez, L., & Hernandez-Vazquez, S. (2006). Distribution, enrichment and accumulation of heavy metals in coastal sediments of Salina Cruz Bay, Mexico. Environmental Monitoring and Assessment, 118, 211–230.

    Article  CAS  Google Scholar 

  • Hassanzadeh, J. (1994). Consequence of the Zagros continental collision on the evolution of the central Iranian plateau. Journal of Earth and Space Physics, 21, 27–38.

    Google Scholar 

  • Heyvart, A. C., Reuter, J. E., Sloton, D. G., & Goldman, C. R. (2000). Paleo-limnological reconstruction of historical atmospheric lead and Hg deposition at lake Tahoe, California, Nevada. Environmental Science & Technology, 34, 3588–3597.

    Article  CAS  Google Scholar 

  • Horowitz, A. J., Meybeck, M., Idlafkih, Z., & Biger, F. (1999). Variations in trace element geochemistry in the Seine river basin based on floodplain deposits and bed sediments. Hydrological Process, 13, 1329–1340.

    Article  Google Scholar 

  • Horsfall, M., & Spiff, A. I. (2002). Distribution and partitioning of trace metals in sediments of the lower reaches of the new Carlabar river, port Harcourt, Nigeria. Environmental Monitoring and Assessment, 78, 309–326.

    Article  CAS  Google Scholar 

  • Ibrahim Korfali, S., & Davies, B. E. (2004). Speciation of metals in sediment and water in a river underlain by limestone: Role of carbonate species for purification capacity of rivers. Advances in Environmental Research, 8, 599–612.

    Article  CAS  Google Scholar 

  • Jain, C. K. (2004). Metal fractionation study on bed sediments of river Yamuna, India. Water Research, 38, 569–578.

    Article  CAS  Google Scholar 

  • Jain, C. K., & Sharma, C. K. (2001). Distribution of trace metals in the Hindon river system, India. Journal of Hydrology, 253, 81–90.

    Article  CAS  Google Scholar 

  • Jain, C. K., Singhal, D. C., & Sharma, U. K. (2005). Metal pollution assessment of sediment and water in the river Hindon, India. Environmental Monitoring and Assessment, 105, 193–207.

    Article  CAS  Google Scholar 

  • Jardo, C. P., & Nickless, G. (1989). Chemical association of Zn, Cd, Pb, and Cu in soils and sediments determined by sequential extraction technique. Environmental Technology Letters, 10, 743–752.

    Article  Google Scholar 

  • Jones, B., & Turki, A. (1997). Distribution and speciation of heavy metals in surficial sediments from the Tees estuary, north– east England. Marine Pollution Bulletin, 34(10), 768–779.

    Article  CAS  Google Scholar 

  • Karbassi, A. R., Bayati, I., & Moattar, F. (2006). Origin and chemical partitioning of heavy metals in riverbed sediments. International Journal of Environmental Science & Technology, 3(1), 35–42.

    CAS  Google Scholar 

  • Karbassi, A. R., Nouri, J., & Ayaz, G. O. (2007). Flocculation of trace metals during mixing of Talar River Water with Caspian Seawater. International Journal of Environmental Research, 1(1), 66–73.

    CAS  Google Scholar 

  • Kersten, M., & Forstner, U. (1991). Speciation of trace elements in sediments. In G. E. Batley (Ed.) Trace element speciation: Analytical methods and problems (pp. 245–317). CRC Press, Boca Raton.

  • Kingston, H. M., & Jassie, L. B. (1988). In: Introduction to microwave sample preparation (p. 263). American Chemical Society, Professional Reference Book, Washington DC, U.S.A.

    Google Scholar 

  • Klavins, M., Briede, A., Rodinov, V., Kokorite, I., Parele, E., & Klavina, I. (2000). Heavy metals in river of Lativa. Science of the Total Environment, 262, 175–183.

    Article  CAS  Google Scholar 

  • Korfali, S. I., & Davies, B. E. (2000). Total and extractable trace elements in Lebanese river sediments: Dry season data. Environmental Geochemistry and Health, 22, 265–273.

    Article  CAS  Google Scholar 

  • Kuppusamy, M. R., & Giridhar, V. V. (2006). Factor analysis of water quality characteristics including trace metal speciation in the coastal environmental system of Chennai Ennore. Environment International, 32, 174–179.

    Article  CAS  Google Scholar 

  • Li, R. Y., Yang, H., Zhou, Z. G., Lu, J. J., Shao, X. H., & Jin, F. (2007). Fractionation of heavy metals in sediments from Dianchi Lake, China. Pedosphere, 17(2), 265–272.

    Article  CAS  Google Scholar 

  • Li, Y., Yu, Z., Song, X., & Mu, Q. (2006). Trace metal concentrations in suspended particles, sediments and clams from Jiaozhou Bay of China. Environmental Monitoring and Assessment, 121, 491–501.

    Article  CAS  Google Scholar 

  • Licheng, Z., & Guijiu, Z. (1996). The species and geochemical characteristics of heavy metals in the sediments of Kangjiaxi River in the Shuikaushan Mine Area, China. Applied Geochemistry, 11, 217–222.

    Article  Google Scholar 

  • Li-Jyur, T., Kuang-Chung, Y., Shu-Fen, C., Pei-Yi, K., Chia-Yuan, C., & Chao-Hsien, L. (2003). Partitioning variation of heavy metals in contaminated river sediment via bioleaching: Effect of sulfur added to total solids ratio. Water Research, 37, 4623–4630.

    Article  CAS  Google Scholar 

  • Lopez-Sanchez, J. F., Rubio, R., & Rauret, G. (1993). Comparison of two sequential extraction procedures for trace metal partitioning in sediments. International Journal of Environmental Analytical Chemistry, 51, 113–121.

    Article  CAS  Google Scholar 

  • Lopez-Sanchez, J. F., Rubio, R., & Rauret, G. (1996). Trace metal partitioning in marine sediments and sludges deposited off the coast of Barcelona (Spain). Water Research, 30(1), 153–159.

    Article  CAS  Google Scholar 

  • Luoma, S. N. (1990). Processing affecting metal concentrations in estuarine and coastal marine sediments. In P. S. Rainbow, & R. W. Furness (Eds.), Heavy metals in the marine environment. CRC Press, Cleveland.

  • Mehrdadi, N., Ghobadi, M., Nasrabadi, T., & Hoveidi, H. (2006). Evaluating the qualitative condition and self-purification potential of Tajan River using Qual2E model. Iranian Journal of Environmental Health, Science and Engineering, 3(3), 199–204.

    CAS  Google Scholar 

  • Morillo, J., Usero, J., & Gracia, I. (2002). Partitioning of metals in sediments from the Odiel River (Spain). Environment International, 28, 263–271.

    Article  CAS  Google Scholar 

  • Muller, G. (1979). Schwermetalle in den sediments des Rheins- Veranderungen Seitt. Umschan, 79, 778–783.

    Google Scholar 

  • Murakami, M., Fujita, M., Furumai, H., Kasuga, I., & Kurisu, F. (2009). Sorption behavior of heavy metal species by soakaway sediment receiving urban road runoff from residential and heavily trafficked areas. Journal of Hazardous Material, 164, 707–712.

    Article  CAS  Google Scholar 

  • Nabi Bidhendi, G. R., Karbassi, A. R., Nasrabadi, T., & Hoveidi, H. (2007). Influence of copper mine on surface water quality. International Journal of Science and Technology, 4(1), 85–91.

    Google Scholar 

  • Nasrabadi, T., Nabi Bidhendi, G. R., Karbassi, A. R., Hoveidi, H., Nasrabadi, I., Pezeshk, H., et al. (2009). Influence of Sungun copper mine on groundwater quality, NW Iran. Environmental Geology, 58, 693–700.

    Article  CAS  Google Scholar 

  • Neal, C., Smith, C. J., Jeffery, H. J., Jarvie, H. P., & Robson, A. J. (1996). Trace element concentration in the major rivers entering the Humber estuary, NE England. Journal of Hydrology, 182, 37–64.

    Article  CAS  Google Scholar 

  • Pardo, R., Barrado, E., Perez, L., & Vega, M. (1990). Determination and association of heavy metals in sediments of the Pisucrga, river. Water Research, 24(3), 373–379.

    Article  CAS  Google Scholar 

  • Pekey, H. (2006). Heavy metal pollution assessment in sediments of the Izmit Bay, Turkey. Environmental Monitoring and Assessment, 123, 219–231.

    Article  CAS  Google Scholar 

  • Rauret, G. (1998). Extraction procedures for the determination of heavy metals in contaminated soil and sediments. Talanta, 46(3), 449–455.

    Article  CAS  Google Scholar 

  • Rauret, G., Rubio, R., Lopez-Sanchez, J., & Casassas, E. (1988). Determination and speciation of copper and lead in sediments of a Mediterranean river (river Tenes, Catalonia, Spain). Water Research, 22, 449–445.

    Article  CAS  Google Scholar 

  • Rauret, G., Lopez-Sanchez, J. F., Sauquillo, A., Rubio, R., Davidson, C., Ure, A., et al. (1999). Improvement of the BCR three step sequential extraction procedure prior to the certification of new sediment and soil reference materials. Journal of Environmental Monitoring, 1, 57–61.

    Article  CAS  Google Scholar 

  • Rijstenbil, J. W., & Poortvliet, T. C. W. (1992). Copper and zinc in estuarine water: Chemical speciation in relation to bioavailability to the marine planktonic diatom Ditylum brightwellii. Environmental Toxicology and Chemistry, 11, 1615–1625.

    Article  CAS  Google Scholar 

  • Sakai, H., Kojima, Y., & Saito, K. (1986). Distribution of metals in water and sieved sediments in the Toyohira river. Water Research, 20, 559–567.

    Article  CAS  Google Scholar 

  • Salomons, W., & Forstner, U. (1980). Trace metal analysis on polluted sediments. Part II: Evaluation of environmental impact. Environmental Technology Letters, 1, 506–517.

    Article  CAS  Google Scholar 

  • Sharma, V. K., Rhhudy, K. B., Koening, R., & Vazquez, F. G. (1999). Metals in sediments of the upper Languna Madra. Marine Pollution Bulletin, 38(12), 1221–1226.

    Article  CAS  Google Scholar 

  • Shrestha, S., & Kazama, F. (2007). Assessment of surface water quality using multivariate statistical techniques: A case study of the Fuji river basin, Japan. Environmental Modelling and Software, 22, 464–475.

    Article  Google Scholar 

  • Singh, M. (2001). Heavy metal pollution in freshly deposited sediments of the Yamuna River (the Ganga river tributary): A case study from Delhi and Agra urban centers India. Environmental Geology, 40(6), 664–671.

    Article  CAS  Google Scholar 

  • Srivastava, S. K., Gupta, V. K., Anupam Mohan, D. (1994). Status of some toxic heavy metal ions in the upper reaches of river Gnages, Indian. Journal of Chemistry Society, 71, 29–34.

    CAS  Google Scholar 

  • Stamatis, N., Kamidis, N., & Sylaios, G. (2006). Sediment and suspended matter lead contamination in the gulf of Kavala, Greece. Environmental Monitoring and Assessment, 115, 433–449.

    Article  CAS  Google Scholar 

  • Summers, R. W. (1980). The diet and feeding behaviour of the flounder Platichthys flesus (L.) in the Ythan Estuary, Aberdeenshire, Scotland. Estuarine, Coastal and Shelf Science, 2, 217–232.

    Google Scholar 

  • Surija, B., & Branica, M. (1995). Distribution of Cd, Pb, Cu and Zn in carbonate sediments from the KrKa river estuary obtained by sequential extraction. Science of the Total Environment, 170, 101–118.

    Article  CAS  Google Scholar 

  • Tessier, A., Campell, P. G. C., & Bisson, M. (1979). Sequential extraction procedure for the speciation of partition of particulate trace metals. Analytical Chemistry, 51, 844–851.

    Article  CAS  Google Scholar 

  • Tessier, A., Campbell, P. G. C., & Bisson, M. (1980). Trace metal speciation in the Yamaska and St. Francois rivers (Quebec). Canadian Journal of Earth Sciences, 17, 90–105.

    CAS  Google Scholar 

  • Throne, L. T., & Nickless, G. (1981). The relation between heavy metals and particle size fractions within the seven estuary (UK) inter-tidal sediments. Science of the Total Environment, 19, 213–217.

    Google Scholar 

  • Toksoz, M. N., & Bird, P. (1977). Formation and evolution of marginal basins and continental plateaus. In M. Talwani, & W. C. Pitman III (Eds.), Island arcs, deep sea trenches and backarc basins. American Geophysical Union Maurice Ewing Series 1 (pp. 379–393).

  • Turekian, K. K., & Wedepohl, K. H. (1961). Distribution of the elements in some major units of Earth’s crust. Bulletin of the Geological Society of America, 72, 175–192.

    Article  CAS  Google Scholar 

  • Yang, H., & Rose, N. L. (2003). Distribution of Hg in the lake sediments across the UK. Science of the Total Environment, 304, 391–404.

    Article  CAS  Google Scholar 

  • Yu, K. Y., Tasi, L. J., Chen, S. H., & Ho, S. T. (2001). Chemical binding of heavy metals in anoxic river sediments. Water Research, 35(7), 4086–4094.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Touraj Nasrabadi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nasrabadi, T., Nabi Bidhendi, G., Karbassi, A. et al. Evaluating the efficiency of sediment metal pollution indices in interpreting the pollution of Haraz River sediments, southern Caspian Sea basin. Environ Monit Assess 171, 395–410 (2010). https://doi.org/10.1007/s10661-009-1286-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-009-1286-x

Keywords

Navigation