Skip to main content

Advertisement

Log in

Temperature affects the response of heterotrophic bacteria and mixotrophic algae to enhanced concentrations of soil extract

  • Short research note
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

To investigate the consequences of increased temperature and enhanced input of dissolved organic matter (DOM) into lakes for heterotrophicic bacteria and for mixotrophic algae which use DOM in addition to photosynthesis, the hypotheses were tested whether (1) both bacteria and mixotrophic algae benefit from increased input of DOM, or (2) increased DOM input enhances bacterial biomass and thereby decreases algal biomass. Growth experiments in batch cultures, exudation measurements, and competition experiments in chemostats were performed at two temperature levels. Increased temperature stimulated the autotrophic growth rate of Chlorella protothecoides. Bacteria and Chlorella increased their heterotrophic growth rates at higher DOM concentration at lower temperature whereas enhanced DOM concentration hardly stimulated their growth at higher temperature. In chemostats, enhanced input of soil extract increased both bacterial and algal biomass at lower temperature whereas bacterial biomass increased only slightly and algal biomass decreased at higher temperature. Thus, the temperature determines the response of microorganisms to enhanced DOM concentration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

References

  • Baines, S. B. & M. L. Pace, 1991. The production of dissolved organic matter by phytoplankton and its importance to bacteria: pattern across marine and freshwater systems. Limnology and Oceanography 36: 1078–1090.

    Article  Google Scholar 

  • Cole, J. J., Y. T. Prairie, N. F. Caraco, W. H. McDowell, L. Tranvik, R. G. Striegl, C. M. Duarte, P. Kortelainen, J. A. Downing, J. J. Middelburg & J. M. Melack, 2007. Plumbing the global carbon cycle: integrating inland waters into the terrestrial carbon budget. Ecosystems 10: 171–184.

    Article  CAS  Google Scholar 

  • Currie, D. J. & J. Kalff, 1984a. A comparison of the abilities of freshwater algae and bacteria to acquire and retain phosphorus. Limnology and Oceanography 29: 298–310.

    Article  CAS  Google Scholar 

  • Currie, D. J. & J. Kalff, 1984b. Can bacteria outcompete phytoplankton for phosphorus? A chemostat test. Microbial Ecology 10: 205–216.

    Article  CAS  Google Scholar 

  • Droop, M. R., 1974. Heterotrophy of carbon. In Stewart, W. D. P. (ed.), Algal Physiology and Biochemistry. Blackwell, Oxford: 530–559.

    Google Scholar 

  • Eimers, M. C., S. A. Watmough & J. M. Buttle, 2008. Long-term trends in dissolved organic carbon concentration: a cautionary note. Biogeochemistry 87: 71–81.

    Article  CAS  Google Scholar 

  • Freeman, C., N. Fenner, N. J. Ostle, H. Kang, D. J. Dowrick, B. Reynolds, M. A. Lock, D. Sleep, S. Hughes & J. Hudson, 2004. Export of dissolved organic carbon from peatlands under elevated carbon dioxide levels. Nature 430: 195–198.

    Article  CAS  PubMed  Google Scholar 

  • Hancke, K. & R. N. Glud, 2004. Temperature effects on respiration and photosynthesis in three diatom-dominated benthic communities. Aquatic Microbial Ecology 37: 265–281.

    Article  Google Scholar 

  • Hejzlar, J., M. Dubrovsky, J. Buchtele & M. Ruzicka, 2003. The apparent and potential effects of climate change on the inferred concentration of dissolved organic matter in a temperate stream (the Malse River, South bohemia). Science of the Total Environment 310: 143–152.

    Article  CAS  PubMed  Google Scholar 

  • Kamjunke, N. & J. Tittel, 2009. Mixotrophic algae constrain the loss of organic carbon by exudation. Journal of Phycology 45: 807–811.

    Article  CAS  Google Scholar 

  • Kamjunke, N., B. Köhler, N. Wannicke & J. Tittel, 2008. Algae as competitors of heterotrophic bacteria for glucose. Journal of Phycology 44: 616–623.

    Article  CAS  Google Scholar 

  • Lango, Z., D. M. Leech & R. G. Wetzel, 2007. Indirect effects of elevated atmospheric CO2 and solar radiation on the growth of culturable bacteria. Fundamental and Applied Limnology/Archiv für Hydrobiologie 168: 327–333.

    Article  CAS  Google Scholar 

  • Lennon, J. T. & L. E. Pfaff, 2005. Source and supply of terrestrial organic matter affects aquatic microbial metabolism. Aquatic Microbial Ecology 39: 107–119.

    Article  Google Scholar 

  • Rocha, O. & A. Duncan, 1985. The relationship between cell carbon and cell volume in freshwater algal species used in zooplankton studies. Jornal of Plankton Research 7: 279–294.

    Article  Google Scholar 

  • Rose, J. M. & D. A. Caron, 2007. Does low temperature constrain the growth rates of heterotrophic protists? Evidence and implications for algal blooms in cold waters. Limnology and Oceanography 52: 886–895.

    Article  Google Scholar 

  • Sanders, R. W., K. G. Porter & D. A. Caron, 1990. Relationship between phototrophy and phagotrophy in the mixotrophic chrysophyte Poterioochromonas malhamensis. Microbial Ecology 19: 97–109.

    Article  Google Scholar 

  • Simon, M. & F. Azam, 1989. Protein content and protein synthesis rates of planktonic bacteria. Marine Ecology Progress Series 51: 201–213.

    Article  CAS  Google Scholar 

  • Tittel, J., J. Poerschmann, N. Wannicke & N. Kamjunke, 2008. Polymerized coumaric acid as a model substrate for terrestrial-derived dissolved organic carbon utilized by aquatic microorganisms. Journal of Microbiology Methods 73: 237–241.

    Article  CAS  Google Scholar 

  • Tittel, J., I. Wiehle, N. Wannicke, H. Kampe, J. Poerschmann, J. Meier & N. Kamjunke, 2009. Utilisation of terrestrial carbon by osmotrophic algae. Aquatic Sciences 71: 46–54.

    Article  CAS  Google Scholar 

  • Urabe, J., J. Togari & J. J. Elser, 2003. Stoichiometric impacts of increased carbon dioxide on a planktonic herbivore. Global Change Biology 9: 818–825.

    Article  Google Scholar 

Download references

Acknowledgements

I thank Silvia Heim for technical assistance, Ursula Gaedke for stimulating discussions, and Jörg Tittel as well as two anonymous reviewers for critical comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Norbert Kamjunke.

Additional information

Handling editor: Luigi Naselli-Flores

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kamjunke, N. Temperature affects the response of heterotrophic bacteria and mixotrophic algae to enhanced concentrations of soil extract. Hydrobiologia 649, 379–383 (2010). https://doi.org/10.1007/s10750-010-0285-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-010-0285-9

Keywords

Navigation