Skip to main content

Advertisement

Log in

Groundwater influence differentially affects periphyton and macrophyte production in lakes

  • SHALLOW LAKES
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Groundwater influx can significantly contribute to nutrient and carbon budgets of lakes, and its influence is the strongest in littoral areas dominated by macrophytes and periphyton. We have reviewed the effects of groundwater-borne nitrogen and phosphorus and dissolved inorganic and organic carbon (DIC, DOC) on these benthic primary producers in lakes. We develop a hypothesis for groundwater effects including the less studied impacts of periphyton shading on macrophytes. Groundwater-borne nutrients and DIC promote both macrophytes and periphyton. Direct studies on groundwater-borne DOC effects are lacking, but coloured DOC contributes to light attenuation and thus can restrict the growth of benthic primary producers. We predict that above certain threshold levels of nutrient influx by groundwater, periphyton and macrophyte biomass should decline owing to shading by phytoplankton and periphyton, respectively. However, because of their higher light requirements, those thresholds should be lower for macrophytes. For macrophytes, a threshold level is also predicted for a shift from DIC limitation to light limitation. Differences in light requirements are expected to result in lower thresholds of DOC loading for declines of macrophytes than periphyton.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  • Allen, E. D. & D. H. N. Spence, 1981. The differential ability of aquatic plants to utilize the inorganic carbon supply in freshwaters. New Phytologist 87: 269–283.

    Article  CAS  Google Scholar 

  • Andersen, F. Ø. & T. Andersen, 2006a. Effects of arbuscular mycorrhizae on biomass and nutrients in the aquatic plant Littorella uniflora. Freshwater Biology 51: 1623–1633.

    Article  CAS  Google Scholar 

  • Andersen, T. & F. Ø. Andersen, 2006b. Effects of CO2 concentration on growth of filamentous algae and Littorella uniflora in a Danish softwater lake. Aquatic Botany 84: 267–271.

    Article  CAS  Google Scholar 

  • Ask, J., J. Karlsson, L. Persson, P. Ask, P. Bystrom & M. Jansson, 2009. Terrestrial organic matter and light penetration: effects on bacterial and primary production in lakes. Limnology & Oceanography 54: 2034–2040.

    Article  Google Scholar 

  • Bacchus, S. T. & P. J. Barile, 2005. Discriminating sources and flowpaths of anthropogenic nitrogen discharges to Florida springs, streams and lakes. Environmental & Engineering Geoscience 11: 347–369.

    Article  Google Scholar 

  • Badger, M. R. & G. D. Price, 1992. The CO2 concentrating mechanism in cyanobacteria and microalgae. Physiologia Plantarum 84: 606–615.

    Article  CAS  Google Scholar 

  • Bain, J. T. & M. C. F. Proctor, 1980. The requirement of aquatic bryophytes for free CO2 as an inorganic carbon source: some experimental evidence. New Phytologist 6: 393–400.

    Article  Google Scholar 

  • Barko, J. W. & R. M. Smart, 1980. Mobilization of sediment phosphorus by submerged freshwater macrophytes. Freshwater Biology 10: 229–239.

    Article  CAS  Google Scholar 

  • Barton, D. R., E. T. Howell & C. L. Fietsch, 2013. Ecosystem changes and nuisance benthic algae on the southeast shores of Lake Huron. Journal of Great Lakes Research 39: 602–611.

    Article  Google Scholar 

  • Belanger, T. V., D. F. Mikutel & P. A. Churchill, 1985. Groundwater seepage nutrient loading in a Florida lake. Water Research 19: 773–781.

    Article  CAS  Google Scholar 

  • Bergström, A. K. & M. Jansson, 2006. Atmospheric nitrogen deposition has caused nitrogen enrichment and eutrophication of lakes in the northern hemisphere. Global Change Biology 12: 635–643.

    Article  Google Scholar 

  • Boström, B. & K. Pettersson, 1982. Different patterns of phosphorus release from lake sediments in laboratory experiments. Hydrobiologia 92: 415–429.

    Article  Google Scholar 

  • Brock, T. D., D. R. Lee, D. J. Janes & D. Winek, 1982. Groundwater seepage as a nutrient source to a drainage lake, Lake Mendota, Wisconsin. Water Research 16: 1255–1263.

    Article  CAS  Google Scholar 

  • Brothers, S., J. Köhler, N. Meyer, K. Attermeyer, H. P. Grossart & S. Hilt, 2014. A feedback loop links brownification and anoxia in a temperate, shallow lake. Limnology & Oceanography 59: 1388–1398.

    Article  CAS  Google Scholar 

  • Brouwer, E., R. Bobbink & J. G. M. Roelofs, 2002. Restoration of aquatic vegetation in acidified and eutrophied softwater lakes: an overview. Aquatic Botany 73: 405–431.

    Article  CAS  Google Scholar 

  • Burkart, M. R., W. W. Simpkins, A. J. Morrow & J. M. Gannon, 2004. Occurrence of total dissolved phosphorous in unconsolidated aquifers and aquitards in Iowa. Journal of the American Water Resources Association 40: 827–834.

    Article  CAS  Google Scholar 

  • Carignan, R. & J. Kalff, 1980. Phosphorus sources for aquatic weeds: water or sediments? Science 207: 987–989.

    Article  CAS  PubMed  Google Scholar 

  • Chappuis, E., E. Gacia & E. Ballesteros, 2014. Environmental factors explaining the distribution and diversity of vascular aquatic macrophytes in a highly heterogeneous Mediterranean Region. Aquatic Botany 113: 72–82.

    Article  Google Scholar 

  • Christensen, K. K. & F. O. Andersen, 1996. Influence of Littorella uniflora on phosphorus retention in sediment supplied with artificial porewater. Aquatic Botany 55: 183–197.

    Article  CAS  Google Scholar 

  • Deines, P., D. Langmuir & R. S. Harmon, 1974. Stable carbon isotope ratios and the existence of a gas phase in the evolution of carbonate ground waters. Geochimica et Cosmochimica Acta 38: 1147–1164.

    Article  CAS  Google Scholar 

  • Dodds, W. K., 2003. The role of periphyton in phosphorus retention in shallow freshwater aquatic systems. Journal of Phycology 39: 840–849.

    Article  CAS  Google Scholar 

  • Ejankowski, W. & T. Lenard, 2015. Climate driven changes in the submerged macrophyte and phytoplankton community in a hard water lake. Limnologica 52: 59–66.

    Article  CAS  Google Scholar 

  • Elser, J. J., M. E. S. Bracken, E. E. Cleland, D. S. Gruner, W. S. Harpole, H. Hillebrand, J. T. Ngai, E. W. Seabloom, J. B. Shurin & J. E. Smit, 2007. Global analysis of nitrogen and phosphorus limitation of primary producers in freshwater, marine and terrestrial ecosystems. Ecology Letters 10: 1135–1142.

    Article  PubMed  Google Scholar 

  • Malheiro, A. C. E., P. Jahns & A. Hussner, 2013. CO2 availability rather than light and temperature determines growth and phenotypical responses in submerged Myriophyllum aquaticum. Aquatic Botany 110: 31–37.

    Article  Google Scholar 

  • Frandsen, M., B. Nilsson, P. Engesgaard & O. Pedersen, 2012. Groundwater seepage stimulates the growth of aquatic macrophytes. Freshwater Biology 57: 907–921.

    Article  CAS  Google Scholar 

  • Garbey, C., G. Thiébaut & S. Muller, 2004. Morphological plasticity of a spreading aquatic macrophyte, Ranunculus peltatus, in response to environmental variables. Plant Ecology 173: 125–137.

    Article  Google Scholar 

  • Gerloff, G. C. & P. H. Krombholz, 1966. Tissue analysis as a measure of nutrient availability for the growth of angiosperm aquatic plants. Limnology & Oceanography 11: 529–537.

    Article  Google Scholar 

  • Gooddy, D. C. & K. Hinsby, 2009. Organic Quality of Groundwaters. In Edmunds, W. M. & P. Shand (eds), Natural Groundwater Quality. Wiley-Blackwell, Ltd., Hoboken.

    Google Scholar 

  • Gooddy, D. C., P. Shand, D. G. Kinniburgh & W. H. van Riemsdijk, 1995. Field-based partition coefficients for trace elements in soil solutions. European Journal of Soil Science 46: 265–285.

    Article  CAS  Google Scholar 

  • Green, T. R., M. Taniguchi, H. Kooi, J. J. Gurdak, D. M. Allen, K. M. Hiscock, H. Treidel & A. Aureli, 2011. Beneath the surface of global change: impacts of climate change on groundwater. Journal of Hydrology 405: 532–560.

    Article  Google Scholar 

  • Grootjans, A. P., R. van Diggelen, M. J. Wassen & W. A. Wiersirga, 1988. The effects of drainage on groundwater quality and plant species distribution in stream valley meadows. Vegetatio 75: 37–48.

    Article  Google Scholar 

  • Hagerthey, S. E. & W. C. Kerfoot, 1998. Groundwater flow influences the biomass and nutrient ratios of epibenthic algae in a north temperate seepage lake. Limnology & Oceanography 43: 1227–1242.

    Article  CAS  Google Scholar 

  • Hagerthey, S. E. & W. C. Kerfoot, 2005. Spatial variation in groundwater-related resource supply influences freshwater benthic algal assemblage composition. Journal of the North American Benthological Society 24: 807–819.

    Article  Google Scholar 

  • Hagerthey, S. E., B. J. Bellinger, K. Wheeler, M. Gantar & E. Gaiser, 2011. Everglades periphyton: a biogeochemical perspective. Critical Reviews in Environmental Science & Technology 41: 309–343.

    Article  Google Scholar 

  • Hanson, P. C., S. R. Carpenter, J. A. Cardille, M. T. Coe & L. A. Winslow, 2007. Small lakes dominate a random sample of regional lake characteristics. Freshwater Biology 52: 814–822.

    Article  Google Scholar 

  • Hansson, L. A., 1992. Factors regulating periphytic algal biomass. Limnology & Oceanography 37: 322–328.

    Article  CAS  Google Scholar 

  • Hawes, I. & R. Smith, 1993. Effect of localised nutrient enrichment on the shallow epilithic periphyton of oligotrophic Lake Taupo, New Zealand. New Zealand Journal of Marine and Freshwater Research 27: 365–372.

    Article  CAS  Google Scholar 

  • Hayashi, M. & D. O. Rosenberry, 2002. Effects of ground water exchange on the hydrology and ecology of surface water. Ground Water 40: 309–316.

    Article  CAS  PubMed  Google Scholar 

  • Hillebrand, H., 2002. Top-down versus bottom-up control of autotrophic biomass – a meta-analysis on experiments with periphyton. Journal of the North American Benthological Society 21: 349–369.

    Article  Google Scholar 

  • Hillebrand, H. & U. Sommer, 1999. The nutrient stoichiometry of benthic microalgal growth: redfield proportions are optimal. Limnology & Oceanography 44: 440–446.

    Article  Google Scholar 

  • Holman, I. P., M. J. Whelan, N. J. K. Howden, P. H. Bellamy, N. J. Willby, M. Rivas-Casado & P. McConvoy, 2008. Phosphorus in groundwater – an overlooked contributor to eutrophication? Hydrological Processes 22: 5121–5127.

    Article  Google Scholar 

  • Holman, I. P., N. J. K. Howden, P. Bellamy, N. Willby, M. J. Whelan & M. Rivas-Casado, 2010. An assessment of the risk to surface water ecosystems of groundwater P in the UK and Ireland. Science of the Total Environment 408: 1847–1857.

    Article  CAS  PubMed  Google Scholar 

  • Hurley, J. P., D. E. Armstrong & C. J. Bowser, 1985. Ground water as a silica source for diatom production in a precipitation-dominated lake. Science 227: 1576–1578.

    Article  CAS  PubMed  Google Scholar 

  • Hussner, A. & P. Jahns, 2015. European native Myriophyllum spicatum showed a higher HCO3 -use capacity than alien invasive Myriophyllum heterophyllum. Hydrobiologia 746: 171–182.

    Article  CAS  Google Scholar 

  • Hussner, A., D. Hofstra, P. Jahns & J. Clayton, 2015. Response capacity to CO2 depletion rather than temperature and light effects explain the growth success of three alien Hydrocharitaceae compared with native Myriophyllum triphyllum in New Zealand. Aquatic Botany 120: 205–211.

    Article  Google Scholar 

  • Jarosiewicz, A. & Z. Witek, 2014. Where do nutrients in an inlet-less lake come from? The water and nutrient balance of a small mesotrophic lake. Hydrobiologia 724: 157–173.

    Article  CAS  Google Scholar 

  • Johnson, V. R., C. Brownlee, R. E. M. Rickaby, M. Graziano, M. Milazzo & J. M. Hall-Spencer, 2013. Responses of marine benthic microalgae to elevated CO2. Marine Biology 160: 1813–1824.

    Article  CAS  Google Scholar 

  • Jones, J. I. & C. Sayer, 2003. Does fish-invertebrate-periphyton cascade precipitate plant loss in shallow lakes? Ecology 84: 2155–2167.

    Article  Google Scholar 

  • Jones, J. I., J. W. Eaton & K. Hardwick, 2000. The influence of periphyton on boundary layer pH conditions: a microelectrode investigation. Aquatic Botany 67: 191–206.

    Article  Google Scholar 

  • Jones, J. I., J. O. Young, J. W. Eaton & B. Moss, 2002. The influence of nutrient loading, dissolved inorganic carbon and higher trophic levels on the interaction between submerged plants and periphyton. Journal of Ecology 90: 12–24.

    Article  Google Scholar 

  • Jones, S. E. & J. T. Lennon, 2015. A test of the subsidy–stability hypothesis: the effects of terrestrial carbon in aquatic ecosystems. Ecology 96: 1550–1560.

    Article  Google Scholar 

  • Jones, S. E., C. T. Solomon & B. C. Weidel, 2012. Subsidy or subtraction: how do terrestrial inputs influence consumer production in lakes? Freshwater Reviews 5: 37–49.

    Article  Google Scholar 

  • Kaiser, K., P. J. Koch, R. Mauersberger, P. Stüve, J. Dreibrodt & O. Bens, 2014. Detection and attribution of lake-level dynamics in northeastern central Europe in recent decades. Regional Environmental Change 14: 1587–1600.

    Article  Google Scholar 

  • Karlsson, J., P. Bystrom, J. Ask, P. Ask, L. Persson & M. Jansson, 2009. Light limitation of nutrient-poor lake ecosystems. Nature 460: 506–509.

    Article  CAS  PubMed  Google Scholar 

  • Kidmose, J. B., B. Nilsson, P. K. Engesgaard, M. Frandsen, S. Karan, F. Landkildehus, M. Søndergaard & E. Jeppesen, 2013. Focused groundwater discharge of phosphorus to a eutrophic seepage lake (Lake Væng, Denmark): implications for lake ecological state and restoration. Hydrogeology Journal 21: 1787–1802.

    Article  CAS  Google Scholar 

  • Köhler, J., J. Hachoł & S. Hilt, 2010. Regulation of submersed macrophyte biomass in a temperate lowland river: interactions between shading by bank vegetation, epiphyton and water turbidity. Aquatic Botany 92: 129–136.

    Article  Google Scholar 

  • Körner, S., 2001. Development of submerged macrophytes in shallow Lake Müggelsee (Berlin, Germany) before and after its switch to the phytoplankton-dominated state. Archiv für Hydrobiologie 152: 395–409.

    Article  Google Scholar 

  • Krabbenhoft, D. P., C. P. Bowser, M. P. Anderson & J. W. Valley, 1990. Estimating groundwater exchange with lakes: 1. The stable isotope mass balance. Water Resources Research 26: 2445–2454.

    CAS  Google Scholar 

  • Lillie, R. A. & J. W. Barko, 1990. Influences of sediments and groundwater on the distribution and biomass of Myriophyllum spicatum L. in Devil’s Lake, Wisconsin. Journal of Freshwater Ecology 5: 417–426.

    Article  CAS  Google Scholar 

  • Lodge, D. M., D. P. Krabbenhoft & R. G. Striegl, 1989. A positive relationship between groundwater velocity and submersed macrophyte biomass in Sparkling Lake. Limnology & Oceanography 34: 235–239.

    Article  Google Scholar 

  • Loeb, S. L., 1986. Algal Biofouling of Oligotrophic Lake Tahoe: Causal Factors Affecting Production. In Evans, L. V. & K. D. Hoagland (eds), Algal Biofouling. Elsevier Science Publishers, Amsterdam: 159–173.

    Chapter  Google Scholar 

  • Loeb, S. L. & C. R. Goldman, 1979. Water and nutrient transport via groundwater from Ward Valley into Lake Tahoe. Limnology & Oceanography 24: 1146–1154.

    Article  CAS  Google Scholar 

  • Loeb, S. L. & S. H. Hackley, 1988. The distribution of submerged macrophytes in Lake Tahoe, California and Nevada, and the positive influence of groundwater seepage. Verhandlungen der Internationalen Vereinigung für theoretische und angewandte Limnologie 23: 1927–1933.

    Google Scholar 

  • Maberly, S. C. & D. H. N. Spence, 1983. Photosynthetic inorganic carbon use by freshwater plants. Journal of Ecology 71: 705–724.

    Article  CAS  Google Scholar 

  • Matzinger, A., M. Schmid, E. Veljanoska-Sarafiloska, S. Patceva, D. Guseska, B. Wagner, B. Muller, M. Sturm & A. Wuest, 2007. Eutrophication of ancient Lake Ohrid: global warming amplifies detrimental effects of increased nutrient inputs. Limnology & Oceanography 52: 338–353.

    Article  CAS  Google Scholar 

  • McBride, M. S. & H. O. Pfannkuch, 1975. Distribution of seepage within lakebeds. Journal of Research of the US Geological Survey 3: 505–512.

    Google Scholar 

  • McConnaughey, T. A., J. W. Labaugh, D. O. Rosenberry, R. G. Striegl, M. M. Reddy, P. F. Schuster & V. Carter, 1994. Carbon budget for a groundwater-fed lake: calcification supports summer photosynthesis. Limnology & Oceanography 39: 1319–1332.

    Article  CAS  Google Scholar 

  • McCormick, P. V., M. B. O’Dell, R. B. E. Shuford III, J. G. Backus & W. C. Kennedy, 2001. Periphyton responses to experimental phosphorus enrichment in a subtropical wetland. Aquatic Botany 71: 119–139.

    Article  CAS  Google Scholar 

  • McElarney, Y. R., P. Rasmussen, R. H. Foya & N. J. Anderson, 2010. Response of aquatic macrophytes in Northern Irish softwater lakes to forestry management; eutrophication and dissolved organic carbon. Aquatic Botany 93: 227–236.

    Article  Google Scholar 

  • Meinikmann, K., J. Lewandowski & G. Nützmann, 2013. Lacustrine groundwater discharge: combined determination of volumes and spatial patterns. Journal of Hydrology 502: 202–211.

    Article  Google Scholar 

  • Melzer, A. 1990. Die Makrophytenvegetation des Tegern-, Schlier- und Riegsees. Informationsberichte Bayerisches Landesamt für Wasserwirtschaft Heft 2/90: 180, Munich, Germany.

  • Middelboe, A. L. & S. Markager, 1997. Depth limits and minimum light requirements of freshwater macrophytes. Freshwater Biology 37: 553–568.

    Article  Google Scholar 

  • Monteith, D. T., J. L. Stoddard, C. D. Evans, H. A. de Wit, M. Forsius, T. Hogasen, A. Wilander, B. L. Skjelkvale, D. S. Jeffries, J. Vuorenmaa, B. Keller, J. Kopacek & J. Vesely, 2007. Dissolved organic carbon trends resulting from changes in atmospheric deposition chemistry. Nature 450: 537–539.

    Article  CAS  PubMed  Google Scholar 

  • Mormul, R. P., J. Ahlgren, M. K. Ekvall, L. A. Hansson & C. Brönmark, 2012. Water brownification may increase the invisibility of a submerged non-native macrophyte. Biological Invasions 14: 2091–2099.

    Article  Google Scholar 

  • Murphy, K. J., 2002. Plant communities and plant diversity in softwater lakes of northern Europe. Aquatic Botany 73: 287–324.

    Article  Google Scholar 

  • Nakayama, T. & M. Watanabe, 2008. Missing role of groundwater in water and nutrient cycle in the shallow eutrophic Lake Kasumigaura, Japan. Hydrological Processes 22: 1150–1172.

    Article  CAS  Google Scholar 

  • Nichols, S. A. & B. Shaw, 2002. The influence of groundwater flow on the distribution and abundance of aquatic plants in some Wisconsin lakes. Journal of Freshwater Ecology 17: 283–295.

    Article  Google Scholar 

  • Özen, A., B. Karapınar, I. Kucuk, E. Jeppesen & M. Beklioglu, 2010. Drought-induced changes in nutrient concentrations and retention in two shallow Mediterranean lakes subjected to different degrees of management. Hydrobiologia 646: 61–72.

    Article  CAS  Google Scholar 

  • Ommen, D. A. O., J. Kidmose, S. Karan, M. R. Flindt, P. Engesgaard, B. Nilsson & F. Ø. Andersen, 2012. Importance of groundwater and macrophytes for the nutrient balance at oligotrophic Lake Hampen, Denmark. Ecohydrology 5: 286–296.

    Article  CAS  Google Scholar 

  • Pace, M. L. & J. J. Cole, 2002. Synchronous variation of dissolved organic carbon and color in lakes. Limnology & Oceanography 47: 333–342.

    Article  CAS  Google Scholar 

  • Pacheco, F. S., F. Roland & J. A. Downing, 2013. Eutrophication reverses whole-lake carbon budgets. Inland Waters 4: 41–48.

    Article  CAS  Google Scholar 

  • Pedersen, O., T. Andersen, K. Ikejima, M. D. Z. Hossain & F. Ø. Andersen, 2006. A multidisciplinary approach to understanding the recent and historical occurrence of the freshwater plant, Littorella uniflora. Freshwater Biology 51: 865–877.

    Article  CAS  Google Scholar 

  • Pelton, D. K., S. N. Levine & M. Braner, 1998. Measurements of phosphorus uptake by macrophytes and epiphytes from the Laplatte River using 32P in stream microcosms. Freshwater Biology 39: 285–299.

    Article  Google Scholar 

  • Phillips, G. L., D. Eminson & B. Moss, 1978. A mechanism to account for macrophyte decline in progressively eutrophicated freshwaters. Aquatic Botany 4: 103–126.

    Article  Google Scholar 

  • Raven, J. A., 1970. Exogenous inorganic carbon sources in plant photosynthesis. Biological Reviews 45: 167–221.

    Article  CAS  Google Scholar 

  • Raven, J. A., J. Beardall & H. Griffiths, 1982. Inorganic C-sources for Lemanea, Cladophora and Ranunculus in a fast-flowing stream: measurements of gas exchange and of carbon isotope ratio and their ecological implications. Oecologia 53: 68–78.

    Article  Google Scholar 

  • Rier, S. T., R. J. Stevenson & G. D. LaLiberte, 2006. Photo-acclimation response of benthic stream algae across experimentally manipulated light gradients: a comparison of growth rates and net primary productivity. Journal of Phycology 42: 560–567.

    Article  CAS  Google Scholar 

  • Roberts, E., J. Kroker, S. Körner & A. Nicklisch, 2003. The role of periphyton during the re-colonization of a shallow lake with submerged macrophytes. Hydrobiologia 506: 525–530.

    Article  Google Scholar 

  • Robertson, D. M., W. J. Rose & D. A. Saad, 2005. Water quality, hydrology, and phosphorus loading to Little St. Germain Lake, Wisconsin, with special emphasis on the effects of winter aeration and ground-water inputs. U.S. Geological Survey Scientific Investigations Report 01/2005: 2005–5071

  • Roelofs, J. G. M., J. A. A. R. Schuurkes & A. J. M. Smits, 1984. Impact of acidification and eutrophication on macrophyte communities in soft waters. II. Experimental studies. Aquatic Botany 18: 389–411.

    Article  CAS  Google Scholar 

  • Roy, J. W., J. M. Robillard, S. B. Watson & M. Hayashi, 2009. Non-intrusive characterization methods for wastewater-affected groundwater plumes discharging to an alpine lake. Environmental Monitoring & Assessment 149: 201–211.

    Article  CAS  Google Scholar 

  • Sachse, R., T. Petzoldt, M. Blumstock, S. Moreira Martinez, M. Pätzig, J. Rücker, J. Janse, W. Mooij & S. Hilt, 2014. Extending one-dimensional models for deep lakes to simulate the impact of submerged macrophytes on water quality. Environmental Modelling & Software 61: 410–423.

    Article  Google Scholar 

  • Sand-Jensen, K., 1977. Effect of epiphytes on eelgrass photosynthesis. Aquatic Botany 3: 55–56.

    Article  CAS  Google Scholar 

  • Sand-Jensen, K. & J. Borum, 1991. Interactions among phytoplankton, periphyton, and macrophytes in temperate freshwaters and estuaries. Aquatic Botany 41: 137–175.

    Article  Google Scholar 

  • Scheffer, M., S. H. Hosper, M. L. Meijer, B. Moss & E. Jeppesen, 1993. Alternative equilibria in shallow lakes. Trends in Ecology and Evolution 8: 275–279.

    Article  CAS  PubMed  Google Scholar 

  • Schindler, D. W., 1977. Evolution of phosphorus limitation in lakes. Science 195: 260–262.

    Article  CAS  PubMed  Google Scholar 

  • Schippers, P., J. E. Vermaat, J. de Klein & W. Mooij, 2004. The effect of atmospheric carbon dioxide elevation on plant growth in freshwater ecosystems. Ecosystems 7: 63–74.

    Article  CAS  Google Scholar 

  • Schneider, S. C., M. Cara, T. E. Eriksen, B. Budzakoska Goreska, A. Imeri, L. Kupe, T. Lokoska, S. Patceva, S. Trajanovska, S. Trajanovski, M. Talevska & E. Veljanoska Sarafilovska, 2014. Eutrophication impacts littoral biota in Lake Ohrid while water phosphorus concentrations are low. Limnologica 44: 90–97.

    Article  CAS  Google Scholar 

  • Sebestyen, S. D. & R. L. Schneider, 2004. Seepage patterns, pore-water, and aquatic plants: hydrological and biogeochemical relationships in lakes. Biogeochemistry 68: 383–409.

    Article  CAS  Google Scholar 

  • Shaw, R. D., J. F. H. Shaw, H. Fricker & E. E. Prepas, 1990. An integrated approach to quantify groundwater transport of phosphorus to Narrow Lake, Alberta. Limnology & Oceanography 35: 870–886.

    Article  CAS  Google Scholar 

  • Shaw, R. D. & E. E. Prepas, 1990. Groundwater-lake interactions: II. Nearshore seepage patterns and the contribution of groundwater to lakes in central Alberta. Journal of Hydrology 199: 121–126.

    Article  Google Scholar 

  • Smith, E. A. & N. A. Walker, 1980. Photosynthesis by aquatic plants: effects of unstirred layers in relation to assimilation of CO2 and HCO3 and to carbon isotopic discrimination. New Phytologist 86: 245–259.

    Article  CAS  Google Scholar 

  • Søndergaard, M., G. Phillips, S. Hellsten, A. Kolada, F. Ecke, H. Maëmets, M. Mjelde, M. M. Azzella & A. Oggioni, 2013. Maximum growing depth of submerged macrophytes in European lakes. Hydrobiologia 704: 165–177.

    Article  Google Scholar 

  • Solomon, C. T., S. E. Jones, B. C. Weidel, I. Buffam, M. L. Fork, J. Karlsson, S. Larsen, J. T. Lennon, J. S. Read, S. Sadro & J. E. Saros, 2015. Ecosystem consequences of changing inputs of terrestrial dissolved organic matter to lakes: current knowledge and future challenges. Ecosystems 18: 376–389.

    Article  Google Scholar 

  • Spijkerman, E., S. C. Maberly & P. F. M. Coesel, 2005. Carbon acquisition mechanisms by planktonic desmids and their link to ecological distribution. Canadian Journal of Botany – Revue Canadienne de Botanique 83: 850–858.

    CAS  Google Scholar 

  • Stasko, A. D., J. M. Gunn & T. A. Johnston, 2012. Role of ambient light in structuring north temperate fish communities: potential effects of increasing dissolved organic carbon concentration with a changing climate. Environmental Reviews 20: 173–190.

    Article  CAS  Google Scholar 

  • Steinberg, C. E. W., S. Kamara, V. Y. Prokhotskaya, L. Manusadñianas, T. Karasyova, M. A. Timofeyev, J. Zhang, A. Paul, T. Meinelt, V. F. Farjalla, A. Y. O. Matsuo, B. K. Burnison & R. Menzel, 2006. Dissolved humic substances – ecological driving forces from the individual to the ecosystem level? Freshwater Biology 51: 1189–1210.

    Article  CAS  Google Scholar 

  • Stets, E. G., R. G. Striegl, G. R. Aiken, D. O. Rosenberry & T. C. Winter, 2009. Hydrologic support of carbon dioxide flux revealed by whole-lake carbon budgets. Journal of Geophysical Research G: Biogeosciences 114: G01008.

    Google Scholar 

  • Stevenson, C., 1988. Comparative ecology of submersed grass beds in freshwater, estuarine, and marine environments. Limnology & Oceanography 33: 867–893.

    Article  CAS  Google Scholar 

  • Striegl, R. G. & C. M. Michmerhuizen, 1998. Hydrologic influence on methane and carbon dioxide dynamics at two north-central Minnesota lakes. Limnology & Oceanography 43: 1519–1529.

    Article  CAS  Google Scholar 

  • Stumm, W. & J. J. Morgan, 1980. Aquatic Chemistry, 2nd ed. Wiley-Interscience, New York.

    Google Scholar 

  • Takahashi, K. & T. Asaeda, 2014. The effect of spring water on the growth of a submerged macrophyte Egeria densa. Landscape Ecological Engineering 10: 99–107.

    Article  Google Scholar 

  • Thiébaut, G., 2005. Does competition for phosphate supply explain the invasion pattern of Elodea species? Water Research 39: 3385–3393.

    Article  PubMed  CAS  Google Scholar 

  • Thiébaut, G. & S. Muller, 2003. Linking phosphorus pools of water, sediment and macrophytes in running waters. International Journal of Limnology 39: 307–316.

    Article  Google Scholar 

  • Tomer, M. D., K. E. Schilling, C. A. Cambardella, P. Jacobsen & P. Drobney, 2010. Groundwater nutrient concentrations during prairie reconstruction on an Iowa landscape. Agriculture, Ecosystems and Environment 139: 206–213.

    Article  CAS  Google Scholar 

  • Tremolieres, M., I. Eglin, U. Roeck & R. Carbiener, 1993. The exchange process between river and groundwater in the floodplain of Alsace (Eastern France). 1. The case of the canalised river Rhine. Hydrobiologia 254: 133–148.

    Article  CAS  Google Scholar 

  • Tuji, A., 2000. The effect of irradiance on the growth of different forms of freshwater diatoms: implications for succession in attached diatom communities. Journal of Phycology 36: 659–661.

    Article  Google Scholar 

  • Turner, M. A., E. T. Howell, M. Summerby, R. H. Hesslein, D. L. Findlay & M. B. Jackson, 1991. Changes in epilithon and epiphyton associated with experimental acidification of a lake to pH 5. Limnology & Oceanography 36: 1390–1405.

    Article  CAS  Google Scholar 

  • Vadeboncoeur, Y., M. J. Vander Zanden & D. M. Lodge, 2002. Putting the lake back together: reintegrating benthic pathways into lake food web models. BioScience 52: 44–55.

    Article  Google Scholar 

  • Vadeboncoeur, Y., E. Jeppesen, M. J. Vander Zanden, H.-H. Schierup, K. Christoffersen & D. M. Lodge, 2003. From Greenland to green lakes: cultural eutrophication and the loss of benthic pathways in lakes. Limnology & Oceanography 48: 1408–1418.

    Article  Google Scholar 

  • Vadeboncoeur, Y., S. P. Devlin, P. B. McIntyre & M. J. Vander Zanden, 2014. Is there light after depth? Distribution of periphyton chlorophyll and productivity in lake littoral zones. Freshwater Science 33: 524–536.

    Article  Google Scholar 

  • Valiela, I., J. Costa, K. Foreman, J. M. Teal, B. Howes & D. Aubrey, 1990. Transport of groundwater-borne nutrients from watersheds and their effects on coastal waters. Biogeochemistry 10: 177–197.

    Article  CAS  Google Scholar 

  • Vinebrooke, R. D. & P. R. Leavitt, 1998. Direct and interactive effects of allochthonous dissolved organic matter, inorganic nutrients, and ultraviolet radiation on an alpine littoral food web. Limnology & Oceanography 43: 1065–1081.

    Article  CAS  Google Scholar 

  • Wassen, M. J., A. Barendregt, M. C. Bootsma & P. P. Schot, 1989. Groundwater chemistry and vegetation of gradients from rich fen to poor fen in the Naardermeer (The Netherlands). Vegetatio 79: 117–132.

    Article  Google Scholar 

  • Wigand, C., F. Ø. Andersen, K. K. Christensen, M. Holmer & H. S. Jensen, 1998. Endomycorrhizae of isoetids along a biogeochemical gradient. Limnology & Oceanography 43: 508–515.

    Article  CAS  Google Scholar 

  • Williamson, C. E., D. P. Morris, M. L. Pace & A. G. Olson, 1999. Dissolved organic carbon and nutrients as regulators of lake ecosystems: resurrection of a more integrated paradigm. Limnology & Oceanography 44: 795–803.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was financially supported by the Leibniz graduate school AQUALINK (www.igb-berlin.de/aqualink.html). We thank Frede Andersen, Michael Hupfer, Jan Köhler, Jörg Lewandowski and Franziska Pöschke for scientific discussions, two anonymous reviewers and Brian Moss for their helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cécile Périllon.

Additional information

Guest editors: M. Beklioğlu, M. Meerhoff, T.A. Davidson, K. A. Ger, K. E. Havens & B. Moss / Shallow Lakes in a Fast Changing World

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Périllon, C., Hilt, S. Groundwater influence differentially affects periphyton and macrophyte production in lakes. Hydrobiologia 778, 91–103 (2016). https://doi.org/10.1007/s10750-015-2485-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-015-2485-9

Keywords

Navigation