Skip to main content
Log in

Towards Reference Viscosities of Carbon Monoxide and Nitrogen at Low Density Using Measurements between 290K and 680K as well as Theoretically Calculated Viscosities

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

An all-quartz oscillating-disk viscometer of very high precision was used to determine the temperature dependence of the viscosities of carbon monoxide and nitrogen at low densities. The measurements were based on a single calibration at room temperature with a value theoretically calculated on the basis of an accurate ab initio pair potential for helium and the kinetic theory of dilute monatomic gases. The uncertainty of the experimental data is conservatively estimated to be ±0.15% at room temperature increasing to ±0.20% at the highest temperature of 682 K. The new data are compared with values recommended by the National Institute of Standards and Technology in the framework of its Standard Reference Data Program REFPROP as well as with experimental data from the literature. Whereas the REFPROP values for nitrogen can be considered as reference values, the new experimental data for carbon monoxide are up to 2% higher than the REFPROP values and should be taken into consideration for a new correlation. The temperature dependence of the viscosities calculated theoretically using ab initio intermolecular potential energy hypersurfaces for carbon monoxide and nitrogen and the kinetic theory of dilute molecular gases should be used for extrapolating the viscosity correlations of both gases to low and high temperatures. In addition, the viscosity ratio of carbon monoxide to nitrogen is investigated with the purpose to establish an improved correlation for carbon monoxide.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Lemmon E.W., Huber M.L., McLinden M.O.: NIST Standard Reference Database 23: Reference Fluid Thermodynamic and Transport Properties. REFPROP, version 9.0. Standard Reference Data Program, Gaithersburg, National Institute of Standards and Technology, Gaithersburg (2010)

    Google Scholar 

  2. Boushehri A., Bzowski J., Kestin J., Mason E.A.: J. Phys. Chem. Ref. Data 16, 445 (1987)

    Article  ADS  Google Scholar 

  3. Millat J., Wakeham W.A.: J. Phys. Chem. Ref. Data 18, 565 (1989)

    Article  ADS  Google Scholar 

  4. Lemmon E.W., Jacobsen R.T.: Int. J. Thermophys. 25, 21 (2004)

    Article  ADS  Google Scholar 

  5. R. Hellmann. Private communication concerning CO (2011)

  6. R. Hellmann. Private communication concerning N2 (2011)

  7. Curtiss C.F.: J. Chem. Phys. 75, 1341 (1981)

    Article  MathSciNet  ADS  Google Scholar 

  8. Vogel E.: Int. J. Thermophys. 31, 447 (2010)

    Article  ADS  Google Scholar 

  9. Vogel E.: Wiss. Z. Univ. Rostock Math. Nat. Reihe 23(2), 169 (1972)

    Google Scholar 

  10. Whitelaw J.H.: J. Sci. Instrum. 41, 215 (1964)

    Article  ADS  Google Scholar 

  11. Newell G.F.: Z. Angew Math. Phys. 10, 160 (1959)

    Article  MathSciNet  Google Scholar 

  12. Vogel E., Jäger B., Hellmann R., Bich E.: Mol. Phys. 108, 3335 (2010)

    Article  ADS  Google Scholar 

  13. Jäger B., Hellmann R., Bich E., Vogel E.: Mol. Phys. 107, 2181 (2009)

    Article  ADS  Google Scholar 

  14. Jäger B., Hellmann R., Bich E., Vogel E.: Mol. Phys. 108, 105 (2010)

    Article  ADS  Google Scholar 

  15. Vogel E.: J. Chem. Eng. Data 56, 3265 (2011)

    Article  Google Scholar 

  16. Bich E., Hellmann R., Vogel E.: Mol. Phys. 105, 3035 (2007)

    Article  ADS  Google Scholar 

  17. Hellmann R., Bich E., Vogel E.: Mol. Phys. 105, 3013 (2007)

    Article  ADS  Google Scholar 

  18. Kestin J., Ro S.T., Wakeham W.A.: J. Chem. Phys. 56, 4119 (1972)

    Article  ADS  Google Scholar 

  19. May E.F., Berg R.F., Moldover M.R.: Int. J. Thermophys. 28, 1085 (2007)

    Article  ADS  Google Scholar 

  20. Vogel E., Bastubbe E., Rohde S.: Wiss. Z. W. Pieck Univ. Rostock Naturwiss. Reihe 33(8), 34 (1984)

    Google Scholar 

  21. Vogel E.: Ber. Bunsenges. Phys. Chem. 88, 997 (1984)

    Google Scholar 

  22. Friend D.G., Rainwater J.C.: Chem. Phys. Lett. 107, 590 (1984)

    Article  ADS  Google Scholar 

  23. Rainwater J.C., Friend D.G.: Phys. Rev. A 36, 4062 (1987)

    Article  ADS  Google Scholar 

  24. Bich E., Vogel E.: Int. J. Thermophys. 12, 27 (1991)

    Article  ADS  Google Scholar 

  25. Bich E., Vogel E.: Transport Properties of Fluids, chap. 5.2, pp. 72–82. Cambridge University Press, Cambridge (1996)

    Google Scholar 

  26. Vogel E., Küchenmeister C., Bich E., Laesecke A.: J. Phys. Chem. Ref. Data 27, 947 (1998)

    Article  ADS  Google Scholar 

  27. Wobser R., Müller F.: Kolloid-Beihefte 52, 165 (1941)

    Google Scholar 

  28. Johnston H.L., Grilly E.R.: J. Phys. Chem. 46, 948 (1942)

    Article  Google Scholar 

  29. Barua A.K., Afzal M., Flynn G.P., Ross J.: J. Chem. Phys. 41, 374 (1964)

    Article  ADS  Google Scholar 

  30. Kestin J., Ro S.T., Wakeham W.A.: Trans. Faraday Soc. 67, 2308 (1971)

    Article  Google Scholar 

  31. Clifford A.A., Gray P., Scott A.C.: J. Chem. Soc. Faraday Trans. 1 71, 875 (1975)

    Article  Google Scholar 

  32. Kestin J., Ro S.T., Wakeham W.A.: Ber. Bunsenges. Phys. Chem. 86, 753 (1982)

    Google Scholar 

  33. DiPippo R., Kestin J., Whitelaw J.H.: Physica 32, 2064 (1966)

    Article  ADS  Google Scholar 

  34. Vogel E., Strehlow T., Millat J., Wakeham W.A.: Z. Phys. Chem. (Leipzig) 270, 1145 (1989)

    Google Scholar 

  35. Seibt D., Vogel E., Bich E., Buttig D., Hassel E.: J. Chem. Eng. Data 51, 526 (2006)

    Article  Google Scholar 

  36. Seibt D., Herrmann S., Vogel E., Bich E., Hassel E.: J. Chem. Eng. Data 54, 2626 (2009)

    Article  Google Scholar 

  37. Johnston H.L., McCloskey K.E.: J. Phys. Chem. 44, 1038 (1940)

    Article  Google Scholar 

  38. Kao J.T.F., Kobayashi R.: J. Chem. Phys. 47, 2836 (1967)

    Article  ADS  Google Scholar 

  39. Clarke A.G., Smith E.B.: J. Chem. Phys. 48, 3988 (1968)

    Article  ADS  Google Scholar 

  40. Clarke A.G., Smith E.B.: J. Chem. Phys. 51, 4156 (1969)

    Article  ADS  Google Scholar 

  41. Gracki J.A., Flynn G.P., Ross J.: J. Chem. Phys. 51, 3856 (1969)

    Article  ADS  Google Scholar 

  42. Guevara F.A., McInteer B.B., Wageman W.E.: Phys. Fluids 12, 2493 (1969)

    Article  ADS  Google Scholar 

  43. Dawe R.A., Smith E.B.: J. Chem. Phys. 52, 693 (1970)

    Article  ADS  Google Scholar 

  44. Kestin J., Ro S.T., Wakeham W.A.: J. Chem. Phys. 56, 4036 (1972)

    Article  ADS  Google Scholar 

  45. Kestin J., Ro S.T., Wakeham W.A.: J. Chem. Phys. 56, 5837 (1972)

    Article  ADS  Google Scholar 

  46. Hellemans J.M., Kestin J., Ro S.T.: J. Chem. Phys. 57, 4038 (1972)

    Article  ADS  Google Scholar 

  47. Hellemans J.M., Kestin J., Ro S.T.: Physica 65, 362 (1973)

    Article  ADS  Google Scholar 

  48. Maitland G.C., Smith E.B.: J. Chem. Soc. Faraday Trans. 1 70, 1191 (1974)

    Article  Google Scholar 

  49. Timrot D.L., Serednitskaya M.A., Traktueva S.A.: Teploenergetika 22(3), 84 (1975)

    Google Scholar 

  50. Gough D.W., Matthews G.P., Smith E.B.: J. Chem. Soc. Faraday Trans. 1 72, 645 (1976)

    Article  Google Scholar 

  51. Kestin J., Khalifa H.E., Ro S.T., Wakeham W.A.: Physica A 88, 242 (1977)

    Article  ADS  Google Scholar 

  52. Lavushchev A.V., Lyusternik V.E.: Teplofiz. Vys. Temp. 16, 209 (1978)

    ADS  Google Scholar 

  53. Matthews G.P., Schofield H., Smith E.B., Tindell A.R.: J. Chem. Soc. Faraday Trans. 1 78, 2529 (1982)

    Article  Google Scholar 

  54. Lukin V.I., Ivakin B.A., Suetin P.E.: Zh. Tekh. Fiz. 53, 931 (1983)

    Google Scholar 

  55. A. Docter, H.W. Lösch, W. Wagner, Entwicklung und Aufbau einer Anlage zur simultanen Messung der Viskosität und der Dichte fluider Stoffe. No. 494 in Fortschr.-Ber. VDI, Reihe 3 (VDI-Verlag, Düsseldorf, 1997)

  56. Evers C., Lösch H.W., Wagner W.: Int. J. Thermophys. 23, 1411 (2002)

    Article  Google Scholar 

  57. Kestin J., Paykoc E., Sengers J.V.: Physica 54, 1 (1971)

    Article  ADS  Google Scholar 

  58. Flynn G.P., Hanks R.V., Lemaire N.A., Ross J.: J. Chem. Phys. 38, 154 (1963)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eckhard Vogel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vogel, E. Towards Reference Viscosities of Carbon Monoxide and Nitrogen at Low Density Using Measurements between 290K and 680K as well as Theoretically Calculated Viscosities. Int J Thermophys 33, 741–757 (2012). https://doi.org/10.1007/s10765-012-1185-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10765-012-1185-1

Keywords

Navigation