Skip to main content
Log in

The Viscosities of Dilute Kr, Xe, and CO\(_2\) Revisited: New Experimental Reference Data at Temperatures from 295 K to 690 K

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

Previously reported, but also unpublished experimental data of our group for the viscosities of dilute krypton, xenon, and carbon dioxide, obtained in the range from 295 K to a maximum of 690 K using oscillating-disk viscometers, were re-evaluated and corrected or extrapolated to the limit of zero density (\(\eta _0\)). The combined standard uncertainty of the data is 0.1 % at room temperature and 0.2 % at higher temperatures. For krypton and carbon dioxide, our \(\eta _0\) data were compared with \(\eta _0\) values theoretically calculated using the kinetic theory and highly accurate ab initio potentials for the krypton atom pair and the CO\(_2\) molecule pair, but also with recent experimental \(\eta _0\) data from the literature. Our data for krypton differ up to 690 K from the theoretical values by \(-0.10\,\%\) to \(+0.28\,\%\), whereas that of Lin et al. (Fluid Phase Equilib. 418:198, 2016) show deviations of +(0.04 to 0.20) % at temperatures from 243 K to 393 K, in each case proving that experiment and theory are in consistent agreement. The re-evaluated \(\eta _0\) data for xenon were compared with recent data from the literature and with calculated values resulting from the HFD-B potential for xenon via the corresponding-states principle to verify that they are reference values. For carbon dioxide, \(\eta _0\) values obtained from 26 re-evaluated isotherms and from eight isotherms of Schäfer et al. (J Chem Thermodyn 89:7, 2015) between 253 K and 473 K are mutually consistent with ab initio calculated and subsequently scaled viscosity values of Hellmann (Chem Phys Lett 613:633, 2014). The isotherms of Schäfer et al. are especially suitable for determining the initial density dependence of the viscosity. Concomitantly inferred reduced second viscosity virial coefficients were checked against two theoretical approaches of the Rainwater–Friend theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. B. Jäger, R. Hellmann, E. Bich, E. Vogel, J. Chem. Phys. 144, 114304 (2016)

    Article  ADS  Google Scholar 

  2. H. Lin, J. Che, J.T. Zhang, X.J. Feng, Fluid Phase Equilib. 418, 198 (2016)

  3. E.F. May, R.F. Berg, M.R. Moldover, Int. J. Thermophys. 28, 1085 (2007)

    Article  ADS  Google Scholar 

  4. R.F. Berg, W.C. Burton, Mol. Phys. 111, 193 (2013)

    Article  ADS  Google Scholar 

  5. R.F. Berg, M.R. Moldover, J. Phys. Chem. Ref. Data 41, 043104 (2012)

    Article  ADS  Google Scholar 

  6. R. Hellmann, Chem. Phys. Lett. 613, 633 (2014)

    Article  Google Scholar 

  7. F.R.W. McCourt, J.J.M. Beenakker, W.E. Köhler, I. Kuščer, Nonequilibrium Phenomena in Polyatomic Gases, Vol. I: Dilute Gases (Clarendon Press, Oxford, 1990)

    Google Scholar 

  8. M. Schäfer, M. Richter, R. Span, J. Chem. Thermodyn. 89, 7 (2015)

    Article  Google Scholar 

  9. E. Vogel, Ber. Bunsenges. Phys. Chem. 88, 997 (1984)

    Article  Google Scholar 

  10. T. Strehlow, Opto-elektronische Meßeinrichtung für ein Schwingscheibenviskosimeter zur Untersuchung der Temperaturabhängigkeit des Viskositätskoeffizienten von Gasen und organischen Dämpfen. Ph.D. thesis, Wilhelm-Pieck-Universität Rostock, Rostock, Germany (1987)

  11. E. Vogel, L. Barkow, Z. Phys. Chem. Leipzig 267, 1038 (1986)

    Google Scholar 

  12. S. Hendl, A.K. Neumann, E. Vogel, High Temp. High Press 25, 503 (1993)

    Google Scholar 

  13. J. Kestin, S.T. Ro, W.A. Wakeham, J. Chem. Phys. 56, 4119 (1972)

    Article  ADS  Google Scholar 

  14. J. Kestin, E. Paykoç, J.V. Sengers, Physica 54, 1 (1971)

    Article  ADS  Google Scholar 

  15. E. Vogel, E. Bastubbe, S. Rohde, Wiss. Z. W. Pieck Univ. Rostock N 33(8), 34 (1984)

    Google Scholar 

  16. G.F. Newell, Z. Angew, Math. Phys. 10, 160 (1959)

    Google Scholar 

  17. E. Vogel, B. Jäger, R. Hellmann, E. Bich, Mol. Phys. 108, 3335 (2010)

    Article  ADS  Google Scholar 

  18. B. Jäger, R. Hellmann, E. Bich, E. Vogel, Mol. Phys. 107, 2181 (2009)

    Article  ADS  Google Scholar 

  19. K. Patkowski, K. Szalewicz, J. Chem. Phys. 133, 094304 (2010)

    Article  ADS  Google Scholar 

  20. B. Jäger, R. Hellmann, E. Bich, E. Vogel, J. Chem. Phys. 135, 084308 (2011)

    Article  ADS  Google Scholar 

  21. E. Bich, J.B. Mehl, R. Hellmann, V. Vesovic, Experimental Thermodynamics, Vol. IX: Advances in Transport Properties of Fluids, chap. 7 (The Royal Society of Chemistry, Cambridge, 2014), pp. 226–252

  22. E. Vogel, Int. J. Thermophys. 31, 447 (2010)

    Article  ADS  Google Scholar 

  23. D.G. Friend, J.C. Rainwater, Chem. Phys. Lett. 107, 590 (1984)

    Article  ADS  Google Scholar 

  24. J.C. Rainwater, D.G. Friend, Phys. Rev. A 36, 4062 (1987)

    Article  ADS  Google Scholar 

  25. E. Bich, E. Vogel, Int. J. Thermophys. 12, 27 (1991)

    Article  ADS  Google Scholar 

  26. E. Bich, E. Vogel, Transport Properties of Fluids. Their Correlation, Prediction and Estimation, chap. 5.2 (Cambridge University Press, Cambridge, 1996), pp. 72–82

  27. H.J.M. Hanley, R.D. McCarty, J.V. Sengers, J. Chem. Phys. 50, 857 (1969)

    Article  ADS  Google Scholar 

  28. J. Kestin, S.T. Ro, W.A. Wakeham, Trans. Faraday Soc. 67, 2308 (1971)

    Article  Google Scholar 

  29. W. Cencek, M. Przybytek, J. Komasa, J.B. Mehl, B. Jeziorski, K. Szalewicz, J. Chem. Phys. 136, 224303 (2012)

    Article  ADS  Google Scholar 

  30. J. Kestin, Ö. Korfali, J.V. Sengers, Physica A 100, 335 (1980)

    Article  ADS  Google Scholar 

  31. E. Bich, J. Millat, E. Vogel, Wiss. Z. W. Pieck Univ. Rostock 36(N8), 5 (1987)

    Google Scholar 

  32. R.A. Aziz, W.J. Meath, A.R. Allnatt, Chem. Phys. 78, 295 (1983)

    Article  ADS  Google Scholar 

  33. R.A. Aziz, M.J. Slaman, Mol. Phys. 57, 825 (1986)

    Article  ADS  Google Scholar 

  34. R.A. Aziz, M.J. Slaman, Mol. Phys. 58, 679 (1986)

    Article  ADS  Google Scholar 

  35. R.A. Aziz, F.R.W. McCourt, C.C.K. Wong, Mol. Phys. 61, 1487 (1987)

    Article  ADS  Google Scholar 

  36. J.J. Hurly, J.B. Mehl, J. Res. Natl. Inst. Stand. Technol. 112, 75 (2007)

    Article  Google Scholar 

  37. C. Evers, H.W. Lösch, W. Wagner, Int. J. Thermophys. 23, 1411 (2002)

    Article  Google Scholar 

  38. A. Laesecke, C.D. Muzny, J. Phys. Chem. Ref. Data in preparation

Download references

Acknowledgments

I am grateful to Dr. Robert Hellmann (Universität Rostock) for many helpful discussions of the manuscript. I thank Dr. Arno Laesecke (National Institute of Standards and Technology, Boulder) for sharing the new scaling factors of carbon dioxide prior to publication and for helpful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eckhard Vogel.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vogel, E. The Viscosities of Dilute Kr, Xe, and CO\(_2\) Revisited: New Experimental Reference Data at Temperatures from 295 K to 690 K. Int J Thermophys 37, 63 (2016). https://doi.org/10.1007/s10765-016-2068-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10765-016-2068-7

Keywords

Navigation