Skip to main content
Log in

Recombinant Synthesis of Human ABCG2 Expressed in the Yeast Saccharomyces cerevisiae: an Experimental Methodological Study

  • Published:
The Protein Journal Aims and scope Submit manuscript

Abstract

Human ABCG2 is an efflux protein belonging to the ATP-binding cassette transporter superfamily. It is expressed in the plasma membrane of different cell types performing various physiological functions. It is the most recently discovered MDR transporter and its structure and function are still not well understood. Thus, expression and functional reconstitution of the protein in different variants and from different sources are important steps for its further investigation. In this work we describe a recombinant synthesis of human ABCG2 R482G from S. cerevisiae. We expressed the human ABCG2 R482G variant in S. cerevisiae and purified the protein from total yeast membranes. Using a panel of sixteen detergents, we analyzed the efficiency of extraction of ABCG2 from membranes by SDS–PAGE and immunoblot analysis. Based on these results, three detergents were selected for further purification studies and two of them, n-octyl-β-D-glucopyranoside and n-dodecyl-β-D-maltopyranoside, yielded functional protein after reconstitution into liposomes. We show here the first example of purified and reconstituted ABCG2 expressed in S. cerevisiae retaining drug-stimulated ATPase activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

MDR:

Multidrug resistance

ABC:

ATP-binding cassette

BCRP:

Breast cancer resistance protein

ABCP:

Placental ABC protein

MXR:

Mitoxantrone resistance protein

MRP:

Multidrug resistance associated protein

MM:

Minimal media

PMSF:

Phenylmethansulfonyl fluoride

DFP:

Diisopropyl fluorophosphate

PVDF:

Polyvinylidene fluoride

HRP:

Horseradish peroxidase

Ni-NTA:

Ni2+-nitrilotriacetate

CHAPSO:

3-[(3-cholamidopropyl)-dimethylammonio]-2-hydroxy-1-propanesulfonate

DM:

n-decyl-β-D-maltopyranoside

DDM:

n-dodecyl-β-D-maltopyranoside

OG:

n-octyl-β-D-glucopyranoside

FC-12:

Fos-choline 12

FC-13:

Fos-choline 13

FC-14:

Fos-choline 14

FC-15:

Fos-choline 15

FC-16:

Fos-choline 16

PMA1:

Plasma membrane H+-ATPase

PDR:

Pleiotropic drug resistance

PGK:

Phosphoglycerate kinase

References

  1. Allikmets R, Schriml LM, Hutchinson A, Romano-Spica V, Dean M (1998) Cancer Res 58:5337–5339

    CAS  Google Scholar 

  2. Anderson JL, Frase H, Michaelis S, Hrycyna CA (2005) J Biol Chem 280:7336–7345

    Article  CAS  Google Scholar 

  3. Bhatia A, Schäfer H, Hrycyna CA (2005) Biochemistry 44:10893–10904

    Article  CAS  Google Scholar 

  4. Chen Z, Liu F, Ren Q, Zhao Q, Ren H, Lu S, Zhang L, Han Z (2010) Int J Cancer 126:841–851

    CAS  Google Scholar 

  5. Cooray HC, Shahi S, Cahn AP, van Veen HW, Hladky SB, Barrand MA (2006) Eur J Pharmacol 531:25–33

    Article  CAS  Google Scholar 

  6. Diop NK, Hrycyna CA (2005) Biochemistry 44:5420–5429

    Article  CAS  Google Scholar 

  7. Doyle LA, Ross DD (2003) Oncogene 22:7340–7358

    Article  Google Scholar 

  8. Doyle LA, Yang W, Abruzzo LV, Krogmann T, Gao Y, Rishi AK, Ross DD (1998) Proc Natl Acad Sci U S A 95:15665–15670

    Article  CAS  Google Scholar 

  9. Dyballa N, Metzger S (2009) J Vis Exp

  10. Ejendal KFK, Diop NK, Schweiger LC, Hrycyna CA (2006) Protein Sci 15:1597–1607

    Article  CAS  Google Scholar 

  11. Ejendal KFK, Hrycyna CA (2002) Curr Protein Pept Sci 3:503–511

    Article  CAS  Google Scholar 

  12. Evans GL, Ni B, Hrycyna CA, Chen D, Ambudkar SV, Pastan I, Germann UA, Gottesman MM (1995) J Bioenerg Biomembr 27:43–52

    Article  CAS  Google Scholar 

  13. Fernandes AR, Sá-Correia I (2003) Yeast 20:207–219

    Article  CAS  Google Scholar 

  14. Figler RA, Omote H, Nakamoto RK, Al-Shawi MK (2000) Arch Biochem Biophys 376:34–46

    Article  CAS  Google Scholar 

  15. Glavinas H, Kis E, Pál A, Kovács R, Jani M, Vági E, Molnár E, Bánsághi S, Kele Z, Janáky T, Báthori G, von Richter O, Koomen G, Krajcsi P (2007) Drug Metab Dispos 35:1533–1542

    Article  CAS  Google Scholar 

  16. Henriksen U, Fog JU, Litman T, Gether U (2005) J Biol Chem 280:36926–36934

    Article  CAS  Google Scholar 

  17. Honjo Y, Hrycyna CA, Yan QW, Medina-Pérez WY, Robey RW, van de Laar A, Litman T, Dean M, Bates SE (2001) Cancer Res 61:6635–6639

    CAS  Google Scholar 

  18. Ishii M, Iwahana M, Mitsui I, Minami M, Imagawa S, Tohgo A, Ejima A (2000) Anticancer Drugs 11:353–362

    Article  CAS  Google Scholar 

  19. Janvilisri T, Venter H, Shahi S, Reuter G, Balakrishnan L, van Veen HW (2003) J Biol Chem 278:20645–20651

    Article  CAS  Google Scholar 

  20. Jungwirth H, Kuchler K (2006) FEBS Lett 580:1131–1138

    Article  CAS  Google Scholar 

  21. Kage K, Fujita T, Sugimoto Y (2005) Cancer Sci 96:866–872

    Article  CAS  Google Scholar 

  22. Kaplan RS, Pedersen PL (1985) Anal Biochem 150:97–104

    Article  CAS  Google Scholar 

  23. Litman T, Druley TE, Stein WD, Bates SE (2001) Cell Mol Life Sci 58:931–959

    Article  CAS  Google Scholar 

  24. Liu Y, Yang Y, Qi J, Peng H, Zhang J (2008) J Pharmacol Exp Ther 326:33–40

    Article  CAS  Google Scholar 

  25. Maliepaard M, Scheffer GL, Faneyte IF, van Gastelen MA, Pijnenborg AC, Schinkel AH, van De Vijver MJ, Scheper RJ, Schellens JH (2001) Cancer Res 61:3458–3464

    CAS  Google Scholar 

  26. Mao Q, Conseil G, Gupta A, Cole SPC, Unadkat JD (2004) Biochem Biophys Res Commun 320:730–737

    Article  CAS  Google Scholar 

  27. Mao Q, Scarborough GA (1997) Biochim Biophys Acta 1327:107–118

    Article  CAS  Google Scholar 

  28. Mao Q, Unadkat JD (2005) AAPS J 7:E118–133

    Article  CAS  Google Scholar 

  29. McDevitt CA, Collins RF, Conway M, Modok S, Storm J, Kerr ID, Ford RC, Callaghan R (2006) Structure 14:1623–1632

    Article  CAS  Google Scholar 

  30. Miyake K, Mickley L, Litman T, Zhan Z, Robey R, Cristensen B, Brangi M, Greenberger L, Dean M, Fojo T, Bates SE (1999) Cancer Res 59:8–13

    CAS  Google Scholar 

  31. Nakanishi T, Doyle LA, Hassel B, Wei Y, Bauer KS, Wu S, Pumplin DW, Fang H, Ross DD (2003) Mol Pharmacol 64:1452–1462

    Article  CAS  Google Scholar 

  32. Oezvegy C, Litman T, Szakács G, Nagy Z, Bates S, Váradi A, Sarkadi B (2001) Biochem Biophys Res Commun 285:111–117

    Article  Google Scholar 

  33. Oezvegy C, Váradi A, Sarkadi B (2002) J Biol Chem 277:47980–47990

    Article  Google Scholar 

  34. Palermo LM, Leak FW, Tove S, Parks LW (1997) Curr Genet 32:93–99

    Article  CAS  Google Scholar 

  35. Polgar O, Robey RW, Morisaki K, Dean M, Michejda C, Sauna ZE, Ambudkar SV, Tarasova N, Bates SE (2004) Biochemistry 43:9448–9456

    Article  CAS  Google Scholar 

  36. Pozza A, Pérez-Victoria JM, Di Pietro A (2009) Protein Expr Purif 63:75–83

    Article  CAS  Google Scholar 

  37. Pozza A, Pérez-Victoria JM, Sardo A, Ahmed-Belkacem A, Di Pietro A (2006) Cell Mol Life Sci 63:1912–1922

    Article  CAS  Google Scholar 

  38. Pál A, Méhn D, Molnár E, Gedey S, Mészáros P, Nagy T, Glavinas H, Janáky T, von Richter O, Báthori G, Szente L, Krajcsi P (2007) J Pharmacol Exp Ther 321:1085–1094

    Article  Google Scholar 

  39. Robey RW, Obrzut T, Shukla S, Polgar O, Macalou S, Bahr JC, Di Pietro A, Ambudkar SV, Bates SE (2009) Cancer Chemother Pharmacol 64:575–583

    Article  CAS  Google Scholar 

  40. Robey RW, Polgar O, Deeken J, To KW, Bates SE (2007) Cancer Metastasis Rev 26:39–57

    Article  CAS  Google Scholar 

  41. Rogers B, Decottignies A, Kolaczkowski M, Carvajal E, Balzi E, Goffeau A (2001) J Mol Microbiol Biotechnol 3:207–214

    CAS  Google Scholar 

  42. Rosenberg MF, Bikadi Z, Chan J, Liu X, Ni Z, Cai X, Ford RC, Mao Q (2010) Structure 18:482–493

    Article  CAS  Google Scholar 

  43. Ross DD, Yang W, Abruzzo LV, Dalton WS, Schneider E, Lage H, Dietel M, Greenberger L, Cole SP, Doyle LA (1999) J Natl Cancer Inst 91:429–433

    Article  CAS  Google Scholar 

  44. Shevchenko A, Wilm M, Vorm O, Mann M (1996) Anal Chem 68:850–858

    Article  CAS  Google Scholar 

  45. Shukla S, Robey RW, Bates SE, Ambudkar SV (2006) Biochemistry 45:8940–8951

    Article  CAS  Google Scholar 

  46. Sievers JG (2007) University of Bonn

  47. Storch CH, Ehehalt R, Haefeli WE, Weiss J (2007) J Pharmacol Exp Ther 323:257–264

    Article  CAS  Google Scholar 

  48. Türk D, Szakács G (2009) Curr Opin Drug Discov Devel 12:246–252

    Google Scholar 

  49. Van Veldhoven PP, Mannaerts GP (1987) Anal Biochem 161:45–48

    Article  Google Scholar 

  50. Wu C, Alman BA (2008) Cancer Lett 268:1–9

    Article  CAS  Google Scholar 

  51. Xu J, Liu Y, Yang Y, Bates S, Zhang J (2004) J Biol Chem 279:19781–19789

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank Dr. Jens Meyer for his helpful discussions and suggestions during this work. We also thank Dieter Baumert for excellent technical assistance and Dr. Ilza Pajeva for thoroughly revising the manuscript. This work was supported by the Deutsche Forschungsgemeinschaft (Graduiertenkolleg GRK804).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Wiese.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jacobs, A., Emmert, D., Wieschrath, S. et al. Recombinant Synthesis of Human ABCG2 Expressed in the Yeast Saccharomyces cerevisiae: an Experimental Methodological Study. Protein J 30, 201–211 (2011). https://doi.org/10.1007/s10930-011-9321-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10930-011-9321-5

Keywords

Navigation