Skip to main content
Log in

Reprocessability and melting behaviour of self-reinforced composites based on PP homo and copolymers

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

In our present study, the reprocessability of a self-reinforced PP composites (SRPPC) prepared by compression molding was studied. The composite materials (handled separately, based on the related matrix material) were ground, then extruded five times and injection molded after the first and fifth cycle in order to investigate the behaviour of the material during reprocessing. As a reference, the matrices of the composites were also reprocessed and injection molded similarly to the composites. On the manufactured specimens, static (tensile and flexural) and dynamic mechanical tests (Charpy) were performed. The melting and crystalline characteristics were studied by Differential Scanning Calorimetry (DSC). The probable decomposition caused by multiple extrusions was followed by the Melt Volume Rate (MVR). The results indicated that in case of commercial materials there is no significant degradation even after multiple reprocessing cycles; therefore, the reprocessability of SRPPC products has no hindrance. The presence of α-iPP reinforcement in the rPP-based composites after reprocessing results in increased inclination for crystallization and consequently leads to improved mechanical stiffness compared to rPP neat matrices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Directive 2000/53/EC of European Parliament and of the Council of 18 September 2000.

  2. Ward IM. Developments in oriented polymers, 1970–2004. Plast Rubber Compos. 2004;33:189–94.

    Article  CAS  Google Scholar 

  3. Ward IM, Hine PJ. Novel composites by hot compaction of fibers. Polym Eng Sci. 1997;37:1809–14.

    Article  CAS  Google Scholar 

  4. Ward IM, Hine PJ. The science and technology of hot compaction. Polymer. 2004;45:1413–27.

    Article  CAS  Google Scholar 

  5. Alcock B, Cabrera NO, Barkoula NM, Reynolds CT, Govaert LE, Peijs T. The effect of temperature and strain rate on the mechanical properties of highly oriented polypropylene tapes and all-polypropylene composites. Compos Sci Technol. 2007;67:2061–70.

    Article  CAS  Google Scholar 

  6. Alcock B, Cabrera NO, Barkoula NM, Spoelstra AB, Loos J, Peijs T. The mechanical properties of woven tape all-polypropylene composites. Compos Pt A Appl Sci Manuf. 2007;38:147–61.

    Article  Google Scholar 

  7. Alcock B, Cabrera NO, Barkoula NM, Wang Z, Peijs T. The effect of temperature and strain rate on the impact performance of recyclable all-polypropylene composites. Compos Pt B Eng. 2008;39:537–47.

    Article  Google Scholar 

  8. Houshyar S, Shanks RA, Hodzic A. Influence of different woven geometry in poly(propylene) woven composites. Macromol Mater Eng. 2005;290:45–52.

    Article  CAS  Google Scholar 

  9. Houshyar S, Shanks RA, Hodzic A. The effect of fiber concentration on mechanical and thermal proverties of fiber-reinforced polypropylene composites. J Appl Polym Sci. 2005;96:2260–72.

    Article  CAS  Google Scholar 

  10. Houshyar S, Shanks RA. Morphology, thermal and mechanical properties of poly(propylene) fibre-matrix composites. Macromol Mater Eng. 2003;288:599–606.

    Article  CAS  Google Scholar 

  11. Bárány T, Izer A, Czigány T. On consolidation of self-reinforced polypropylene composites. Plast Rubber Compos. 2006;35:375–9.

    Article  Google Scholar 

  12. Bárány T, Izer A, Czigány T. High performance self-reinforced polypropylene composites. Mater Sci Forum. 2007;567–538:121–8.

    Article  Google Scholar 

  13. Bárány T, Izer A, Karger-Kocsis J. Impact resistance of all-polypropylene composites composed of alpha and beta modifications. Polym Test. 2009;28:176–82.

    Article  Google Scholar 

  14. Izer A, Bárány T, Varga J. Development of woven fabric reinforced all-polypropylene composites with beta nucleated homo- and copolymer matrices. Compos Sci Technol. 2009;69:2185–92.

    Article  CAS  Google Scholar 

  15. Houshyar S, Shanks RA, Hodzic A. Modelling of polypropylene fibre-matrix composites using finite element analysis. Express Polym Lett. 2009;3:2–12.

    Article  CAS  Google Scholar 

  16. Menyhárd A, Varga J, Liber Á, Belina G. Polymer blends based on the beta-modification of polypropylene. Eur Polym J. 2005;41:669–77.

    Article  Google Scholar 

  17. Padden FJ Jr, Keith HD. Spherulitic crystallization in polypropylene. J Appl Phys. 1959;30:1479–84.

    Article  CAS  Google Scholar 

  18. Varga J, Ehrenstein GW, Schlarb AK. Vibration welding of alpha and beta isotactic polypropylenes: mechanical properties and structure. Express Polym Lett. 2008;2:148–56.

    Article  CAS  Google Scholar 

  19. Varga J. Beta-modification of isotactic polypropylene: preparation, structure, processing, properties, and application. J Macromol Sci Phys. 2002;41:1121–71.

    Article  Google Scholar 

  20. Menyhárd A, Varga J, Molnár G. Comparison of different beta-nucleators for isotactic polypropylene, characterisation by DSC and temperature-modulated DSC (TMDSC) measurements. J Therm Anal Calorim. 2006;83:625–30.

    Article  Google Scholar 

  21. Abraham TN, Wanjale SD, Bárány T, Karger-Kocsis J. Tensile mechanical and perforation impact behavior of all-PP composites containing random PP copolymer as matrix and stretched PP homopolymer as reinforcement: effect of [beta] nucleation of the matrix. Compos Pt A Appl Sci Manuf. 2009;40:662–8.

    Article  Google Scholar 

  22. Bárány T, Karger-Kocsis J, Czigány T. Development and characterization of self-reinforced poly(propylene) composites: carded mat reinforcement. Polym Adv Technol. 2006;17:818–24.

    Article  Google Scholar 

  23. Bhattacharyya D, Maitrot P, Fakirov S. Polyamide 6 single polymer composites. Express Polym Lett. 2009;3:525–32.

    Article  CAS  Google Scholar 

  24. Martins MH, De Paoli MA. Polypropylene compounding with post-consumer material: II. Reprocess. Polym Degrad Stab. 2002;78:491–5.

    Article  CAS  Google Scholar 

  25. González-González VA, Neira-Velázquez G, Angulo-Sánchez JL. Polypropylene chain scissions and molecular weight changes in multiple extrusion. Polym Degrad Stab. 1998;60:33–42.

    Article  Google Scholar 

  26. Xiang Q, Xanthos M, Mitra S, Patel SH, Guo J. Effects of melt reprocessing on volatile emissions and structural/rheological changes of unstabilized polypropylene. Polym Degrad Stab. 2002;77:93–102.

    Article  CAS  Google Scholar 

  27. Incarnato L, Scarfato P, Acierno D. Rheological and mechanical properties of recycled polypropylene. Polym Eng Sci. 1999;39:749–55.

    Article  CAS  Google Scholar 

  28. Ramírez-Vargas E, Navarro-Rodríguez D, Blanqueto-Menchaca AI, Huerta-Martínez BM, Palacios-Mezta M. Degradation effects on the rheological and mechanical properties of multi-extruded blends of impact-modified polypropylene and poly(ethylene-co-vinyl acetate). Polym Degrad Stab. 2004;86:301–7.

    Article  Google Scholar 

  29. Rust N, Ferg EE, Masalova I. A degradation study of isotactic virgin and recycled polypropylene used in lead acid battery casings. Polym Test. 2006;25:130–9.

    Article  CAS  Google Scholar 

  30. da Costa HM, Ramos VD, de Oliveira MG. Degradation of polypropylene (PP) during multiple extrusions: thermal analysis, mechanical properties and analysis of variance. Polym Test. 2007;26:676–84.

    Article  CAS  Google Scholar 

  31. Varga J, Mudra I, Ehrenstein GW. Highly active thermally stable beta-nucleating agents for isotactic polypropylene. J Appl Polym Sci. 1999;74:2357–68.

    Article  CAS  Google Scholar 

  32. Varga J. Melting memory effect of the beta-modification of polypropylene. J Therm Anal. 1986;31:165–72.

    Article  CAS  Google Scholar 

  33. Horváth Z, Sajó I, Stoll K, Menyhárd A, Varga J. The effect of molecular mass on the crystallization tendency and supermolecular structure of the polymorphic modifications of isotactic polypropylene. Express Polym Lett. 2010;4:101–14.

    Article  Google Scholar 

Download references

Acknowledgements

The authors want to thank the Hungarian Scientific Research Fund (OTKA K75117). T. Bárány is thankful for the János Bolyai Research Scholarship of the Hungarian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tamás Bárány.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bárány, T., Izer, A. & Menyhárd, A. Reprocessability and melting behaviour of self-reinforced composites based on PP homo and copolymers. J Therm Anal Calorim 101, 255–263 (2010). https://doi.org/10.1007/s10973-010-0741-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-010-0741-9

Keywords

Navigation