Skip to main content
Log in

Character of transitions causing the physicochemical aging of a sapric histosol

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Physicochemical aging of soil organic matter is assured by the dynamic character of weak interactions stabilizing its supramolecular structure. However, aging is difficult to monitor, due to low organic matter content in most soils and relatively large time constants. In order to overcome those problems, a model soil, sapric histosol, was exposed to the accelerated aging after a short heating event to 110 °C, and its thermal characteristics were monitored over several months. Classical and temperature modulated differential scanning calorimetry, microcalorimetry and solid-state NMR were used to elucidate the character of involved transitions. The heating event caused separation of an initially broad transition into two processes; a melting, which showed almost no response on the previous heating and a step transition, which is associated with the disruption of water molecule bridges (WaMB) between molecular segments of organic matter. Both processes are preceded by a preparatory phase, starting at subambient temperatures, in which aliphatic domains probably recrystallize and water molecules condensate forming WaMB stabilizing the physical structure of sapric histosol. The aliphatic moieties showed a particular behavior reflected in higher imperfection in crystallite structure upon slow cooling, which was attributed to their interaction with surrounding porous and heterogeneous structures. The results show that soil organic matter aging, considered as a natural process driven by thermodynamic principles, is caused by successive development of WaMB. This is potentially accompanied by recrystallization of aliphatic structures and both processes lead to higher physicochemical stability of soil organic matter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Totsche KU, Rennert T, Gerzabek MH, Kögel-Knabner I, Smalla K, Spiteller M, et al. Biogeochemical interfaces in soil: the interdisciplinary challenge for soil science. J Plant Nutr Soil Sci. 2009;173(1):88–99.

    Article  Google Scholar 

  2. Burdon J. Are the traditional concepts of the structures of humic substances realistic? Soil Sci. 2001;166(11):752–69.

    Article  CAS  Google Scholar 

  3. Goss K-U, Buschmann J, Schwarzenbach RP. Adsorption of organic vapors to air-dry soils: model predictions and experimental validation. Environ Sci Technol. 2004;38(13):3667–73.

    Article  CAS  Google Scholar 

  4. Niederer C, Goss K-U, Schwarzenbach RP. Sorption equilibrium of a wide spectrum of organic vapors in leonardite humic acid: experimental setup and experimental data. Environ Sci Technol. 2006;40(17):5368–73.

    Article  CAS  Google Scholar 

  5. Poerschmann J, Kopinke F-D. Sorption of very hydrophobic organic compounds (vhocs) on dissolved humic organic matter (dom). 2. Measurement of sorption and application of a flory–huggins concept to interpret the data. Environ Sci Technol. 2001;35:1142–8.

    Article  CAS  Google Scholar 

  6. Kopinke F-D, Poerschmann J, Stottmeister U. Sorption of organic pollutants on anthropogenic humic matter. Environ Sci Technol. 1995;29:941–50.

    Article  CAS  Google Scholar 

  7. Xing B, Pignatello JJ. Dual-mode sorption of low-polarity compounds in glassy poly(vinyl chloride) and soil organic matter. Environ Sci Technol. 1997;31(3):792–9.

    Article  CAS  Google Scholar 

  8. LeBoeuf EJ, Weber WJ. A distributed reactivity model for sorption by soils and sediments. 8. Sorbent organic domains: discovery of a humic acid glass transition and an argument for a polymer-based model. Environ Sci Technol. 1997;31(6):1697–702.

    Article  CAS  Google Scholar 

  9. Graber ER, Borisover MD. Hydration-facilitated sorption of specifically interacting organic compounds by model soil organic matter. Environ Sci Technol. 1998;32(2):258–63.

    Article  CAS  Google Scholar 

  10. Borisover M, Graber ER. Simplified link solvation model (LSM) for sorption in natural organic matter. Langmuir. 2002;18(12):4775–82.

    Article  CAS  Google Scholar 

  11. Kleber M, Johnson MG. Advances in understanding the molecular structure of soil organic matter: implications for interactions in the environment. In: Sparks DL, editor. Advances in agronomy, vol. 106. San Diego: Elsevier Academic Press Inc; 2010. p. 77–142.

    Chapter  Google Scholar 

  12. Kucerik J, Bursakova P, Prusova A, Grebikova L, Schaumann GE. Hydration of humic and fulvic acids studied by DSC. J Therm Anal Calorim. 2012;110:451–9.

    Article  CAS  Google Scholar 

  13. Diehl D. Soil water repellency: dynamics of heterogeneous surfaces. Colloid Surf A. 2013;432:8–18.

    Article  CAS  Google Scholar 

  14. Schaumann GE, Bertmer M. Do water molecules bridge soil organic matter molecule segments? Eur J Soil Sci. 2008;59(3):423–9.

    Article  CAS  Google Scholar 

  15. Schaumann GE. Matrix relaxation and change of water state during hydration of peat. Colloid Surf A. 2005;265(1–3):163–70.

    Article  CAS  Google Scholar 

  16. Hu W-G, Mao J, Xing B, Schmidt-Rohr K. Poly(methylene) crystallites in humic substances detected by nuclear magnetic resonance. Environ Sci Technol. 2000;34:530–4.

    Article  CAS  Google Scholar 

  17. Schaumann GE. Soil organic matter beyond molecular structure. 2. Amorphous nature and physical aging. J Plant Nutr Soil Sci. 2006;169(2):157–67.

    Article  CAS  Google Scholar 

  18. Piccolo A, Spiteller M. Electrospray ionization mass spectrometry of terrestrial humic substances and their size fractions. Anal Bioanal Chem. 2003;377(6):1047–59.

    Article  CAS  Google Scholar 

  19. Piccolo A. The supramolecular structure of humic substances. Soil Sci. 2001;166:810–32.

    Article  CAS  Google Scholar 

  20. David J, Weiter M, Vala M, Vynuchal J, Kucerik J. Stability and structural aspects of diketopyrrolopyrrole pigment and its N-alkyl derivatives. Dyes Pigments. 2011;89(2):137–43.

    Article  CAS  Google Scholar 

  21. Kucerik J, David J, Weiter M, Vala M, Vynuchal J, Ouzzane I, et al. Stability and physical structure tests of piperidyl and morpholinyl derivatives of diphenyl-diketo-pyrrolopyrroles (DPP). J Therm Anal Calorim. 2012;108(2):467–73.

    Article  CAS  Google Scholar 

  22. Schaumann GE. Soil organic matter beyond molecular structure. 1. Macromolecular and supramolecular characteristics. J Plant Nutr Soil Sci. 2006;169(2):145–56.

    Article  CAS  Google Scholar 

  23. Stevenson FJ. Humus chemistry: genesis, composition, reactions. New York: Wiley; 1994.

    Google Scholar 

  24. Hatakeyama T, Hatakeyama H. Thermal properties of green polymers and biocomposites, hot topics in thermal analysis and calorimetry. Dordrecht: Kluwer Academic Publishers; 2004.

    Google Scholar 

  25. Wunderlich B. Thermal analysis of polymeric materials. 1st ed. Berlin Heidelberg New York: Springer; 2005.

    Google Scholar 

  26. LeBoeuf EJ. Macromolecular characteristics of natural organic matter and their influence on sorption and desorption behavior of organic chemicals (PhD Dissertation). Michigan, USA: The University of Michigan, 1998.

  27. Chilom G, Rice JA. Glass transition and crystallite melting in natural organic matter. Org Geochem. 2005;36(10):1339–46.

    Article  CAS  Google Scholar 

  28. Schaumann GE, LeBoeuf EJ. Glass transitions in peat: their relevance and the impact of water. Environ Sci Technol. 2005;39(3):800–6.

    Article  CAS  Google Scholar 

  29. Hurrass J, Schaumann GE. Is glassiness a common characteristic of soil organic matter? Environ Sci Technol. 2005;39(24):9534–40.

    Article  CAS  Google Scholar 

  30. Jaeger F. Swelling of soil organic matter and pors size distribution in soil as determined by 1H-NMR-Relaxometry [PhD]. Landau: University Koblenz-Landau; 2011.

    Google Scholar 

  31. Schaumann GE, Thiele-Bruhn S. Molecular modelling of soil organic matter: squaring the circle? Geoderma. 2011;169:55–68.

    Article  Google Scholar 

  32. Schaumann GE, Diehl D, Bertmer M, Jaeger A, Conte P, Alonzo G, et al. Combined proton NMR wideline and NMR relaxometry to study SOM-water interactions of cation-treated soils. J Hydrol Hydromech. 2013;61(1):50–63.

    Article  CAS  Google Scholar 

  33. Mikutta R, Schaumann GE, Gildemeister D, Bonneville S, Kramer MG, Chorovere J, et al. Biogeochemistry of mineral-organic associations across a long-term mineralogical soil gradient (0.3–4100 kyr), Hawaiian Islands. Geochim Cosmochim Acta. 2009;73(7):2034–60.

    Article  CAS  Google Scholar 

  34. Jäger A, Schaumann GE, Bertmer M. Optimized NMR spectroscopic strategy to characterize water dynamics in soil samples. Org Geochem. 2011;42(8):917–25.

    Article  Google Scholar 

  35. Kunhi Mouvenchery Y, Kučerík J, Diehl D, Schaumann GE. Cation-mediated cross-linking in natural organic matter: a review. Rev Environ Sci Biotechnol. 2012;11(1):41–54.

    Article  Google Scholar 

  36. Schaumann GE, Gildemeister D, Kunhi Mouvenchery Y, Spielvogel S, Diehl D. Interactions between cations and water molecule bridges in soil organic matter. J Soils Sediments. 2013;13(9):1579–88.

    Article  CAS  Google Scholar 

  37. Schneckenburger T, Schaumann GE, Woche SK, Thiele-Bruhn S. Short-term evolution of hydration effects on soil organic matter properties and resulting implications for sorption of naphthalene-2-ol. J Soils Sediments. 2012;12(8):1269–79.

    Article  CAS  Google Scholar 

  38. Kunhi Mouvenchery Y, Jaeger A, Aquino AJA, Tunega D, Diehl D, Bertmer M, et al. Restructuring of a peat in interaction with multivalent cations: effect of cation type and aging time. PLoS One. 2013;8(6):e65359.

    Article  Google Scholar 

  39. Wunderlich B, Boller A, Okazaki I, Ishikiriyama K. Heat-capacity determination by temperature-modulated DSC and its separation from transition effects. Thermochim Acta. 1997;304(305):125–36.

    Article  Google Scholar 

  40. Seyler RJ, editor. Assignment of the glass transition. Philadelphia: American Society for Testing and Materials; 1994.

    Google Scholar 

  41. Moukhina E. Determination of kinetic mechanisms for reactions measured with thermoanalytical instruments. J Therm Anal Calorim. 2012;109:1203–14.

    Article  CAS  Google Scholar 

  42. Dupuy J, Leroy E, Maazouz A. Determination of activation energy and preexponential factor of thermoset reaction kinetics using differential scanning calorimetry in scanning mode: influence of baseline shape on different calculation methods. J Appl Polym Sci. 2000;78(13):2262–71.

    Article  CAS  Google Scholar 

  43. Riesen R. Choosing the right baseline. User Com. 2007;25:1–6.

    Google Scholar 

  44. DeLapp RC, Young KD, LeBoeuf EJ. Characterization of thermodynamic properties of several soil- and sediment-derived natural organic materials. Preprints of Extended Abstracts presented at the ACS National Meeting, American Chemical Society, Division of Environmental Chemistry. 2001;41(2):294-8.

  45. Rotaru A, Moanta A, Popa G, Rotaru P, Segal E. Thermal decomposition kinetics of some aromatic azomonoethers. J Therm Anal Calorim. 2009;97(2):485–91.

    Article  CAS  Google Scholar 

  46. Rotaru A, Gosa M. Computational thermal and kinetic analysis. J Therm Anal Calorim. 2009;97(2):421–6.

    Article  CAS  Google Scholar 

  47. Kissinger HE. Reaction kinetics in differential thermal analysis. Anal Chem. 1957;29:1702–6.

    Article  CAS  Google Scholar 

  48. Akahira T, Sunose T. Method of determining activation deterioration constant of electrical insulating materials. Res Rep. 1971;16:22–31.

    Google Scholar 

  49. Kucerik J, Prusova A, Rotaru A, Flimel K, Janecek J, Conte P. DSC study on hyaluronan drying and hydration. Thermochim Acta. 2011;523(1–2):245–9.

    Article  CAS  Google Scholar 

  50. Barany T, Izer A, Menyhard A. Reprocessability and melting behaviour of self-reinforced composites based on PP homo and copolymers. J Therm Anal Calorim. 2010;101(1):255–63.

    Article  CAS  Google Scholar 

  51. Menyhard A, Dora G, Horvath Z, Faludi G, Varga J. Kinetics of competitive crystallization of beta- and alpha-modifications in beta-nucleated iPP studied by isothermal stepwise crystallization technique. J Therm Anal Calorim. 2012;108(2):613–20.

    Article  CAS  Google Scholar 

  52. Simpson MJ, Simpson AJ. The chemical ecology of soil organic matter molecular constituents. J Chem Ecol. 2012;38(6):768–84.

    Article  CAS  Google Scholar 

  53. Sutton R, Sposito G. Molecular structure in soil humic substances: the new view. Environ Sci Technol. 2005;39(23):9009–15.

    Article  CAS  Google Scholar 

  54. Feng XJ, Simpson AJ, Simpson MJ. Investigating the role of mineral-bound humic acid in phenanthrene sorption. Environ Sci Technol. 2006;40(10):3260–6.

    Article  CAS  Google Scholar 

  55. Simpson MJ, Johnson PCE. Identification of mobile aliphatic sorptive domains in soil humin by solid-state C-13 nuclear magnetic resonance. Environ Toxicol Chem. 2006;25(1):52–7.

    Article  CAS  Google Scholar 

  56. Metin S, Hartel RW. Crystallization of fats and oils. In: Shahidi F, editor. Bailey’s industrial oil and fat products. New York: Wiley; 2005. p. 45–76.

    Google Scholar 

  57. Phillips JD. Signatures of divergence and self-organization in soils and weathering profiles. J Geol. 2000;108:91–102.

    Article  Google Scholar 

  58. Kögel-Knabner I, Hatcher PG, Tegelaar EW, De Leeuw JW. Aliphatic components of forest soil organic matter as determined by solid-state carbon-13 NMR and analytical pyrolysis. Sci Total Environ. 1992;113(1–2):89–106.

    Article  Google Scholar 

  59. Marsh KN, editor. Recommended reference materials for the realization of physicochemical properties. Oxford: Blackwell; 1987.

    Google Scholar 

  60. Aquino AJA, Tunega D, Pasalic H, Schaumann GE, Haberhauer G, Gerzabek MH, et al. Molecular dynamics simulations of water molecule-bridges in polar domains of humic acids. Environ Sci Technol. 2011;45(19):8411–9.

    Article  CAS  Google Scholar 

  61. Pradzynski CC, Forck RM, Zeuch T, Slavicek P, Buck U. A fully size-resolved perspective on the crystallization of water clusters. Science. 2012;337(6101):1529–32.

    Article  CAS  Google Scholar 

  62. Prusova A, Vergeldt FJ, Kucerik J. Influence of water content and drying on the physical structure of native hyaluronan. Carbohydr Polym. 2013;95:515–21.

    Article  CAS  Google Scholar 

  63. Simon P, Thomas PS. Some important features of glassines and the nature of amorphous solids. In: Sestak J, Holecek M, Malek J, Kremenakova D, editors. Thermodynamic, structural and behavioral aspects of materials accentuating non-crystalline states. Plzen: O.P.S Nymburk; 2011. p. 248–64.

    Google Scholar 

  64. Steed JW, Atwood JL. Supramolecular chemistry: a concise introduction. 1st ed. Chichester: Wiley; 2000.

    Google Scholar 

  65. Suresh SJ, Naik VM. Hydrogen bond thermodynamic properties of water from dielectric constant data. J Chem Phys. 2000;113(21):9727–32.

    Article  CAS  Google Scholar 

  66. Volkov VI, Skirda VD, Vasina EN, Korotchkova SA, Ohya H, Soontarapa K. Self-diffusion of water-ethanol mixture in chitosan membranes obtained by pulsed-field gradient nuclear magnetic resonance technique. J Membr Sci. 1998;138(2):221–5.

    Article  CAS  Google Scholar 

  67. Atkins P, De Paula J. Physical chemistry. Oxford: Oxford University Press; 2006.

    Google Scholar 

  68. Siewert C, Demyan M, Kucerik J. Interrelations between soil respiration and its thermal stability. J Therm Anal Calorim. 2012;110:413–9.

    Article  CAS  Google Scholar 

  69. Kucerik J, Siewert C, Ctvrtnickova A. Practical application of thermogravimetry in soil science. Part 1: thermal and biological stability of soils from contrasting regions. J Therm Anal Calorim. 2013;113(3):1103–11.

    Article  CAS  Google Scholar 

  70. Kucerik J, Siewert C. Practical application of thermogravimetry in soil science Part 2: modeling and prediction of soil respiration using thermal mass losses. J Them Anal Calorim. 2014;116:563–70.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors would like to thank Dr. Christian Ortmann from TA Instruments, Part of Waters GmbH, Eschborn 65760, Germany for measurement on TAMIII and Yamuna Kunhi Mouvenchery from University of Koblenz-Landau for fruitful discussion. Further the DFG financial support, project SCHA849/8 is acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jiří Kučerík or Gabriele E. Schaumann.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kučerík, J., Schwarz, J., Jäger, A. et al. Character of transitions causing the physicochemical aging of a sapric histosol. J Therm Anal Calorim 118, 1169–1182 (2014). https://doi.org/10.1007/s10973-014-3971-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-014-3971-4

Keywords

Navigation