Skip to main content
Log in

Practical application of thermogravimetry in soil science

Part 4. Relationship between clay, organic carbon and organic matter contents

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Growing demands for sustainable land use challenges the management of soil organic matter (SOM). Research on SOM stabilization mechanisms during the last decades opened access to new approaches of SOM assessment. This study tried to empower this trend with a focus on the interrelations between soil components including clay, organic carbon and bound water toward a unifying assessment for practical land use. Soil samples from different regions of the world were collected, air-dried, sieved and equilibrated to 76 % relative humidity prior to analysis. Thermogravimetry was applied to search for a relationship between thermal mass losses corresponding to soil components and mass losses on ignition (MLI) between 110 and 550 °C. The results refer to a predictability of MLI from thermal mass losses in two 10 °C temperature steps (TML), which are both closely correlated with the content of clay and soil organic carbon (SOC), respectively. We found a relationship MLI = 10 × TML130–140 °C + 25 × TML320–330 °C − 2 with R 2 = 0.98, applicable for soils with a wide range of properties. Using previous results, this equation can be rewritten as SOC = 0.48 × MLI–0.12 × clay + 0.2, which is similar to previously published relationship. The application of equation to plots with varying fertilization in long-term field experiments revealed deviations, which could be explained by different amounts of biologically degradable, non-humified, fresh organic residues or similar organic admixtures. This assumption was tested by application to untouched by human activity soils before and after laboratory incubation. The microbiological decay of SOM in incubated samples led to significantly lower differences of calculated and measured MLI, confirming a decrease in the amount of fresh organic matter. We conclude that thermogravimetry is applicable to study interrelations between soil components and to assess soil organic carbon content and quality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Montgomery DR. Dirt: the erosion of civilizations. Berkeley: University of California Press; 2007.

    Google Scholar 

  2. Ehrlich PR, Ehrlich AH. Can a collapse of global civilization be avoided? Proc R Soc B. 2013;280:20122845.

    Article  Google Scholar 

  3. Murty D, Kirschbaum MUF, Mcmurtrie RE, Mcgilvray H. Does conversion of forest to agricultural land change soil carbon and nitrogen? A review of the literature. Global Change Biol. 2002;8:105–23.

    Article  Google Scholar 

  4. Dinakaran J, Hanief M, Meena A, Rao KS. The chronological advancement of soil organic carbon sequestration research: a review. P Indian Acad Sci B. 2014;84:487–504.

    CAS  Google Scholar 

  5. Gao Y, Yu G, He N. Equilibration of the terrestrial water, nitrogen, and carbon cycles: advocating a health threshold for carbon storage. Ecol Eng. 2013;57:366–74.

    Article  Google Scholar 

  6. Batlle-Aguilar J, Brovelli A, Porporato A, Barry DA. Modelling soil carbon and nitrogen cycles during land use change. A review. Agron Sustain Dev. 2011;31:251–74.

    Article  CAS  Google Scholar 

  7. von Lutzow M, Kogel-Knabner I, Ludwig B, Matzner E, Flessa H, Ekschmitt K, Guggenberg G, Marschner B, Kalbitz K. Stabilization mechanisms of organic matter in four temperate soils: development and application of a conceptual model. J Plant Nutr Soil Sci. 2008;171(1):111–24.

    Article  Google Scholar 

  8. Schmidt MWI, Torn MS, Abiven S, Dittma T, Guggenberger G, Janssens IA, et al. Persistence of soil organic matter as an ecosystem property. Nature. 2011;478:49–55.

    Article  CAS  Google Scholar 

  9. Liu M, Hu F, Chen X. A review on mechanisms of soil organic carbon stabilization. Acta Ecol Sin. 2007;27:2642–50.

    Article  CAS  Google Scholar 

  10. Krull ES, Baldock JA, Skjemstad JO. Importance of mechanisms and processes of the stabilisation of soil organic matter for modelling carbon turnover. Funct Plant Biol. 2003;30:207–22.

    Article  Google Scholar 

  11. Piccolo A. The supramolecular structure of humic substances: a novel understanding of humus chemistry and implications in soil science. Adv Agron. 2002;75:57–134.

    Article  CAS  Google Scholar 

  12. Bronick CJ, Lal R. Soil structure and management: a review. Geoderma. 2005;124(1–2):3–22.

    Article  CAS  Google Scholar 

  13. Kleber M, Sollins P, Sutton R. A conceptual model of organo-mineral interactions in soils: self-assembly of organic molecular fragments into zonal structures of mineral surfaces. Biogeochemistry. 2007;85:9–24.

    Article  Google Scholar 

  14. Six J, Bossuyt H, Degryze S, Denef K. A history of research on the link between (micro)aggregates, soil biota, and soil organic matter dynamics. Soil Till Res. 2004;79(1):7–31.

    Article  Google Scholar 

  15. Six J, Elliott ET, Paustian K. Soil macroaggregate turnover and microaggregate formation: a mechanism for C sequestration under no-tillage agriculture. Soil Biol Biochem. 2000;32(14):2099–103.

    Article  CAS  Google Scholar 

  16. Gregorich EG, Kachanoski RG, Voroney RP. Carbon mineralization in soil size fractions after various amounts of aggregate disruption. J Soil Sci. 1989;40:649–59.

    Article  CAS  Google Scholar 

  17. Rasmussen PE, Keith WT, Goulding JR, Brown PR, Grace H, Jansen H, et al. Long-term agroecosystem experiments: assessing agricultural sustainability and global change. Science. 1998;282:893–6.

    Article  CAS  Google Scholar 

  18. Körschens M, Albert E, Barkusky D, Baumecker M, Behle-Schalk L, et al. Effect of mineral and organic fertilization on crop yield, nitrogen uptake, carbon and nitrogen balances, as well as soil organic carbon content and dynamics: results from 20 European long-term field experiments of the twenty-first century. Arch Agron Soil Sci. 2012;59:1–24.

    Google Scholar 

  19. Jandl R, Rodeghiero M, Martinez C, Cotrufo MF, Bampa F, van Wesemael B, et al. Current status, uncertainty and future needs in soil organic carbon monitoring. Sci Total Environ. 2014;468:376–83.

    Article  Google Scholar 

  20. Gray JM, Humphreys GS, Deckers JA. Relationships in soil distribution as revealed by a global soil database. Geoderma. 2009;150(3–4):309–23.

    Article  Google Scholar 

  21. Dungait JAJ, Hopkins DW, Gregory AS, Whitmore AP. Soil organic matter turnover is governed by accessibility not recalcitrance. Glob Change Biol. 2012;18:1781–96.

    Article  Google Scholar 

  22. De Vos B, Vandecasteele B, Deckers J, Muys B. Capability of loss-on-ignition as a predictor of total organic carbon in non-calcareous forest soils. Commun Soil Sci Plan. 2005;36(19–20):2899–921.

    Article  Google Scholar 

  23. Truong Xuan V, Heitkamp F, Jungkunst HF, Reimer A, Gerold G. Simultaneous measurement of soil organic and inorganic carbon: evaluation of a thermal gradient analysis. J Soil Sediment. 2013;13(7):1133–40.

    Article  Google Scholar 

  24. Pribyl WD. A critical review of the conventional SOC to SOM conversion factor. Geoderma. 2010;156:75–83.

    Article  CAS  Google Scholar 

  25. Ghabbour EA, Davies G, Cuozzo NP, Miller RO. Optimized conditions for determination of total soil organic matter in diverse samples by mass loss on ignition. J Plant Nutr Soil Sci. 2014;177(6):914–9.

    Article  CAS  Google Scholar 

  26. Hoogsteen MJJ, Latinga EA, Bakker EJ, Groot JCJ, Tittonell PA. Estimating soil organic carbon trough loss on ignition: effects of ignition conditions and structural water loss. Eur J Soil Sci. 2015;66:320–8.

    Article  CAS  Google Scholar 

  27. Pallasser R, Minasny B, McBratney AB. Soil carbon determination by thermogravimetrics. PeerJ. 2013;1:e6.

    Article  Google Scholar 

  28. Siewert C. Investigation of the thermal and biological stability of soil organic matter. 1st ed. Aachen: Shaker; 2001.

    Google Scholar 

  29. Siewert C. Rapid screening of soil properties using thermogravimetry. Soil Sci Soc Am J. 2004;68(5):1656–61.

    Article  CAS  Google Scholar 

  30. Siewert C, Demyan M, Kucerik J. Interrelations between soil respiration and its thermal stability. J Therm Anal Calorim. 2012;110:413–9.

    Article  CAS  Google Scholar 

  31. Kucerik J, Ctvrtnickova A, Siewert C. Practical application of thermogravimetry in soil science. Part 1: thermal and biological stability of soils from contrasting regions. J Therm Anal Calorim. 2013;113(3):1103–11.

    Article  CAS  Google Scholar 

  32. Kucerik J, Siewert C. Practical application of thermogravimetry in soil science. Part 2: modeling and prediction of soil respiration using thermal mass losses. J Them Anal Calorim. 2014;116:563–70.

    Article  CAS  Google Scholar 

  33. Siewert C, Kucerik J. Practical applications of thermogravimetry in soil science. Part 3: interrelations between soil components and unifying principles of pedogenesis. J Therm Anal Calorim. 2015;120:471–80.

    Article  CAS  Google Scholar 

  34. Van Breemen N. Natural organic tendency. Nature. 2002;415:381–2.

    Article  Google Scholar 

  35. Lal R, Lorenz K, Hüttl RF, Schneider BU, von Braun J. Terrestrial biosphere as a source and sink of atmospheric carbon dioxide. In: Lorenz K, Hüttl RF, Schneider BU, von Braun J, Lal R, editors. Recarbonization of the biosphere. Dordrecht: Springer; 2012.

    Chapter  Google Scholar 

  36. Siewert C, Schaumann GE. Evolution und erdgeschichtliche Genese von Bodenbildungsprozessen. Natur- und Kulturlandschaft. 2002;5:76–81.

    Google Scholar 

  37. Bölter M, Siewert C, Kuhn D, editors. Patterns of soil microbes and soil organic matter characteristics in a periglacial environment at King George Island (Maritime Antarctic). Proceedings of the Symposium “Ecology of Antarctic Coastal Oasis”; 2001; Valtice, Czech Republic: Masaryk University Brno.

  38. Elias EA, Alaily F, Siewert C. Characteristics of organic matter in selected soil profiles from the Gezira Vertisols determined by thermogravimetry. Int Agrophys. 2002;16:20–4.

    Google Scholar 

  39. Yariv S, Borisover M, Lapides I. Few introducing comments on the thermal analysis of organoclays. J Therm Anal Calorim. 2011;105(3):897–906.

    Article  CAS  Google Scholar 

  40. Yariv S, Michaelian KH. Introduction to organo-clay complexes and interactions. In: Yariv S, Cross H, editors. Organo-clay complexes and interactions. New York: CRC Press, Marcel Decker Inc; 2002. p. 39–112.

    Google Scholar 

  41. Langier-Kuzniarova A. Thermal analysis of organo-clay complexes. In: Yariv S, Cross H, editors. Organo-clay complexes and interactions. New York: CRC Press, Marcel Decker Inc; 2002. p. 273–344.

    Google Scholar 

  42. Földvári M. Handbook of thermogravimetric system of minerals and its use in geological practice. Budapest: Geological Institute of Hungary; 2011.

    Google Scholar 

  43. Konen ME, Jacobs PM, Burras CL, Talaga BJ, Mason JA. Equations for predicting soil organic carbon using loss-on-ignition for north central US soils. Soil Sci Soc Am J. 2002;66(6):1878–81.

    Article  CAS  Google Scholar 

  44. Fierer N, Grandy AS, Six J, Paul EA. Searching for unifying principles in soil ecology. Soil Biol Biochem. 2009;41(11):2249–56.

    Article  CAS  Google Scholar 

  45. Bimueller C, Mueller CW, von Luetzow M, Kreyling O, Koelbl A, Haug S, et al. Decoupled carbon and nitrogen mineralization in soil particle size fractions of a forest topsoil. Soil Biol Biochem. 2014;78:263–73.

    Article  CAS  Google Scholar 

  46. Koerschens M, Albert E, Baumecker M, Ellmer F, Grunert M, Hoffmann S, et al. Humus and climate change—results of 15 long-term experiments. Arch Agron Soil Sci. 2014;60(11):1485–517.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are thankful for the support of the Deutsche Forschungsgemeinschaft (DFG, project Si 488/3-1).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jiri Kucerik or Christian Siewert.

Additional information

This paper is dedicated to the 80th birthday of Prof. Dr. sc. Martin Körschens, who encouraged Christian Siewert during his Ph.D. studies to search for methods to assess soil organic matter for demands of practical land use. Furthermore, Prof. Dr. Körschen’s example in maintaining long-term agricultural experiments in Germany during the last three decades has enabled and encouraged soil organic matter-related research.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kucerik, J., Demyan, M.S. & Siewert, C. Practical application of thermogravimetry in soil science. J Therm Anal Calorim 123, 2441–2450 (2016). https://doi.org/10.1007/s10973-015-5141-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-015-5141-8

Keywords

Navigation