Skip to main content
Log in

Stability of a Therapeutic Layer of Immobilized Recombinant Human Tropoelastin on a Plasma-Activated Coated Surface

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

ABSTRACT

Purpose

To modify blood-contacting stainless surfaces by covalently coating them with a serum-protease resistant form of tropoelastin (TE). To demonstrate that the modified TE retains an exposed, cell-adhesive C-terminus that persists in the presence of blood plasma proteases.

Methods

Recombinant human TE and a point mutant variant (R515A) of TE were labeled with 125Iodine and immobilized on plasma-activated stainless steel (PAC) surfaces. Covalent attachment was confirmed using rigorous detergent washing. As kallikrein and thrombin dominate the serum degradation of tropoelastin, supraphysiological levels of these proteases were incubated with covalently bound TE and R515A, then assayed for protein levels by radioactivity detection. Persistence of the C-terminus was assessed by ELISA.

Results

TE was significantly retained covalently on PAC surfaces at 88 ± 5% and 71 ± 5% after treatment with kallikrein and thrombin, respectively. Retention of R515A was 100 ± 1.3% and 87 ± 2.3% after treatment with kallikrein and thrombin, respectively, representing significant improvements over TE. The functionally important C-terminus was cleaved in wild-type TE but retained by R515A.

Conclusions

Protein persists in the presence of human kallikrein and thrombin when covalently immobilized on metal substrata. R515A displays enhanced protease resistance and retains the C-terminus presenting a protein interface that is viable for blood-contacting applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

125I:

iodine-125

316L SS:

316L stainless steel

ANOVA:

analysis of variance

PAC:

plasma-activated coating

PEO:

polyethylene oxide

R515A:

point-mutant tropoelastin SHEL∆26A(R515A)

SDS:

sodium dodecyl sulfate

SEM:

scanning electron microscopy

TE:

tropoelastin (SHEL∆26A)

REFERENCES

  1. Wong LS, Khan F, Micklefield J. Selective covalent protein immobilization: strategies and applications. Chem Rev. 2009;109:4025–53.

    Article  PubMed  CAS  Google Scholar 

  2. Mani G, Feldman MD, Patel D, Agrawal CM. Coronary stents: a materials perspective. Biomaterials. 2007;28:1689–710.

    Article  PubMed  CAS  Google Scholar 

  3. Nagaoka M, Jiang HL, Hoshiba T, Akaike T, Cho CS. Application of recombinant fusion proteins for tissue engineering. Ann Biomed Eng. 2010;38:683–93.

    Article  PubMed  Google Scholar 

  4. Colman RW, Marder VJ, Clowes AW, George JN, Goldhaber SZ, editors. Hemostasis and Thrombosis. Basic principles and clinical practice. 5th ed. Philadelphia: Lippincott Williams & Wilkins; 2006. p. 437–41.

    Google Scholar 

  5. Gorbet MB, Sefton MV. Biomaterial-associated thrombosis: roles of coagulation factors, complement, platelets and leukocytes. Biomaterials. 2004;25:5681–703.

    Article  PubMed  CAS  Google Scholar 

  6. Karnik SK, Brooke BS, Bayes-Genis A, Sorensen L, Wythe JD, Schwartz RS, et al. A critical role for elastin signaling in vascular morphogenesis and disease. Development. 2003;130:411–23.

    Article  PubMed  CAS  Google Scholar 

  7. Jordan SW, Chaikof EL. Novel thromboresistant materials. J Vasc Surg. 2007;45:A104–15.

    Article  PubMed  Google Scholar 

  8. Jensen SA, Vrhovski B, Weiss AS. Domain 26 of tropoelastin plays a dominant role in association by coacervation. J Biol Chem. 2000;275:28449–54.

    Article  PubMed  CAS  Google Scholar 

  9. Almine JF, Bax DV, Mithieux SM, Nivison-Smith L, Rnjak J, Waterhouse A, et al. Elastin-based materials. Chem Soc Rev. 2010. doi:10.1039/b919452p.

    PubMed  Google Scholar 

  10. Bax DV, Rodgers UR, Bilek MMM, Weiss AS. Cell adhesion to tropoelastin is mediated via the C-terminal GRKRK motif and integrin alphaVbeta3. J Biol Chem. 2009;284:28616–23.

    Article  PubMed  CAS  Google Scholar 

  11. Rodgers UR, Weiss AS. Cellular interactions with elastin. Pathol Biol. 2005;53:390–8.

    Article  PubMed  CAS  Google Scholar 

  12. Bilek MMM, McKenzie DR. Plasma modified surfaces for covalent immobilization of functional biomolecules in the absence of chemical linkers: towards better biosensors and a new generation of medical implants. Biophys Rev. 2010;2:55–65.

    Article  CAS  Google Scholar 

  13. Yin Y, Wise SG, Nosworthy NJ, Waterhouse A, Bax DV, Youssef H, et al. Covalent immobilisation of tropoelastin on a plasma deposited interface for enhancement of endothelialisation on metal surfaces. Biomaterials. 2009;30:1675–81.

    Article  PubMed  CAS  Google Scholar 

  14. Waterhouse A, Yin Y, Wise SG, Bax D, McKenzie DR, Bilek MMM, et al. The immobilization of recombinant human tropoelastin on metals using a plasma-activated coating to improve biocompatibility of coronary stents. Biomaterials. 2010;31:8332–40.

    Article  PubMed  CAS  Google Scholar 

  15. Yin Y, Fisher K, Nosworthy NJ, Bax D, Rubanov S, Gong B, et al. Covalently bound biomimetic layers on plasma polymers with graded metallic interfaces for in vivo implants. Plasma Processes Polym. 2009;6:658–66.

    Article  CAS  Google Scholar 

  16. Manning M, Chou D, Murphy B, Payne R, Katayama D. Stability of protein pharmaceuticals: an update. Pharm Res. 2010;27:544–75.

    Article  PubMed  Google Scholar 

  17. Martin SL, Vrhovski B, Weiss AS. Total synthesis and expression in Escherichia coli of a gene encoding human tropoelastin. Gene. 1995;154:159–66.

    Article  PubMed  CAS  Google Scholar 

  18. Yin Y, Nosworthy NJ, Youssef H, Gong B, Bilek MMM, McKenzie DR. Acetylene plasma coated surfaces for covalent immobilization of proteins. Thin Solid Films. 2009;517:5343–6.

    Article  CAS  Google Scholar 

  19. Wu WJ, Vrhovski B, Weiss AS. Glycosaminoglycans mediate the coacervation of human tropoelastin through dominant charge interactions involving lysine side chains. J Biol Chem. 1999;274:21719–24.

    Article  PubMed  CAS  Google Scholar 

  20. Wu WJ, Vrhovski B, Weiss AS. Glycosaminoglycans mediate the coacervation of human tropoelastin through dominant charge interactions involving lysine side chains. J Biol Chem. 1999;274:21719–24.

    Article  PubMed  CAS  Google Scholar 

  21. Wang A, Cao T, Tang H, Liang X, Salley SO, Ng KYS. In vitro haemocompatibility and stability of two types of heparin-immobilized silicon surfaces. Colloids Surf, B. 2005;43:245–55.

    Article  CAS  Google Scholar 

  22. Thorslund S, Sanchez J, Larsson R, Nikolajeff F, Bergquist J. Functionality and stability of heparin immobilized onto poly(dimethylsiloxane). Colloids Surf, B. 2005;45:76–81.

    Article  CAS  Google Scholar 

  23. Onder S, Kazmanli K, Kok FN. Alteration of PTFE surface to increase its blood compatibility. J Biomater Sci. 2010. doi:10.1163/092050610X510551.

    Google Scholar 

  24. Yang Z, Wang J, Luo R, Maitz MF, Jing F, Sun H, Huang N. The covalent immobilization of heparin to pulsed-plasma polymeric allylamine films on 316L stainless steel and the resulting effects on hemocompatibility. Biomaterials. In Press, Corrected Proof: 2009.

  25. Mohamed S, Aly A, Mohamed T, Salah H. Immobilization of horseradish peroxidase on nonwoven polyester fabric coated with chitosan. Appl Biochem Biotechnol. 2008;144:169–79.

    Article  PubMed  CAS  Google Scholar 

  26. Andersson J, Bexborn F, Klinth J, Nilsson B, Ekdahl KN. Surface-attached PEO in the form of activated pluronic with immobilized factor H reduces both coagulation and complement activation in a whole-blood model. J Biomed Mater Res A. 2005;76A:25–34.

    Google Scholar 

  27. Chen M-C, Liang H-F, Chiu Y-L, Chang Y, Wei H-J, Sung H-W. A novel drug-eluting stent spray-coated with multi-layers of collagen and sirolimus. J Control Release. 2005;108:178–89.

    Article  PubMed  CAS  Google Scholar 

  28. Seeger JM, Ingegno MD, Bigatan E, Klingman N, Amery D, Widenhouse C, et al. Hydrophilic surface modification of metallic endoluminal stents. J Vasc Surg. 1995;22:327–36.

    Article  PubMed  CAS  Google Scholar 

  29. De Scheerder I, Verbeken E, Van Humbeeck J. Metallic surface modification. Semin Interv Cardiol. 1998;3:139–44.

    Article  PubMed  Google Scholar 

  30. Chan AKC, Rak J, Berry L, Liao P, Vlasin M, Weitz J, et al. Antithrombin-heparin covalent complex: a possible alternative to heparin for arterial thrombosis prevention. Circulation. 2002;106:261–5.

    Article  PubMed  CAS  Google Scholar 

  31. Leckband D, Langer R. An approach for the stable immobilization of proteins. Biotechnol Bioeng. 1991;37:227–37.

    Article  PubMed  CAS  Google Scholar 

  32. Bax DV, McKenzie DR, Weiss AS, Bilek MMM. The linker-free covalent attachment of collagen to plasma immersion ion implantation treated polytetrafluoroethylene and subsequent cell-binding activity. Biomaterials. 2010;31:2526–34.

    Article  PubMed  CAS  Google Scholar 

  33. Kondyurin A, Nosworthy NJ, Bilek MMM. Attachment of horseradish peroxidase to polytetrafluorethylene (teflon) after plasma immersion ion implantation. Acta Biomater. 2008;4:1218–25.

    Article  PubMed  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was supported by grants from the Australian Research Council, the National Health and Medical Research Council, and the University of Sydney Medical Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anthony S. Weiss.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Waterhouse, A., Bax, D.V., Wise, S.G. et al. Stability of a Therapeutic Layer of Immobilized Recombinant Human Tropoelastin on a Plasma-Activated Coated Surface. Pharm Res 28, 1415–1421 (2011). https://doi.org/10.1007/s11095-010-0327-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-010-0327-z

KEY WORDS

Navigation