Skip to main content
Log in

Aggregation and Chemical Modification of Monoclonal Antibodies under Upstream Processing Conditions

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

To investigate antibody stability and formation of modified species under upstream processing conditions.

Methods

The stability of 11 purified monoclonal human IgG1 and IgG4 antibodies, including an IgG1-based bispecific CrossMab, was compared in downscale mixing stress models. One of these molecules was further evaluated in realistic bioreactor stress models and in cell culture fermentations. Analytical techniques include size exclusion chromatography (SEC), turbidity measurements, cation exchange chromatography (cIEX), dynamic light scattering (DLS) and differential scanning calorimetry (DSC).

Results

Sensitivity in downscale stress models varies among antibodies and results in formation of high molecular weight (HMW) aggregates. Stability is increased in cell culture medium and in bioreactors. Media components stabilizing the proteins were identified. Extensive chemical modifications were detected both in stress models as well as during production of antibodies in cell culture fermentations.

Conclusions

Protective compounds must be present in chemically defined fermentation media in order to stabilize antibodies against the formation of HMW aggregates. An increase in chemical modifications is detectable in bioreactor stress models and over the course of cell culture fermentations; this increase is dependent on the expression rate, pH, temperature and fermentation time. Consequently, product heterogeneity increases during upstream processing, and this compromises the product quality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

Tagg :

aggregation temperature

cIEX:

cation exchange chromatography

DSC:

differential scanning calorimetry

DSP:

downstream processing

DLS:

dynamic light scattering

F-Buffer:

fermentation-like buffer

HMW:

high molecular weight

Tm :

melting point temperature

MAb:

monoclonal antibody

NTU:

nephelometric turbidity units

Re:

Reynold’s number

SEC:

size exclusion chromatography

USP:

upstream processing

CHO:

chinese Hamster Ovary

IgG:

Immunoglobulin G

xMAB:

CrossMab

PTFE:

polytetrafluoroethylene

PVDF:

polyvinylidenefluoride

UV:

ultraviolet

PBS:

phosphate-buffered saline

References

  1. Carter PJ. Potent antibody therapeutics by design. Nat Rev Immunol. 2006;6:343–57.

    Article  PubMed  CAS  Google Scholar 

  2. Schaefer W, Regula JT, Bähner M, Schanzer J, Croasdale R, Dürr H, Gassner C, Georges G, Kettenberger H, Imhof-Jung S, Schwaiger M, Stubenrauch KG, Sustmann C, Thomas M, Scheuer W, Klein C. Immunoglobulin domain crossover as a generic approach for the production of bispecific IgG antibodies. Proc Natl Acad Sci USA. 2011;108(27):11187–92.

    Article  PubMed  CAS  Google Scholar 

  3. Cromwell MEM, Hilario E, Jacobson F. Protein aggregation and bioprocessing. AAPS J. 2006;8:E572–9.

    Article  PubMed  CAS  Google Scholar 

  4. Vazquez-Rey M, Lang DA. Aggregates in monoclonal antibody manufacturing processes. Biotechnol Bioeng. 2011;108:1494–508.

    Article  PubMed  CAS  Google Scholar 

  5. Schroder M, Schafer R, Schafer R, Friedl P. Induction of protein aggregation in an early secretory compartment by elevation of expression level. Biotechnol Bioeng. 2002;78:131–40.

    Article  PubMed  CAS  Google Scholar 

  6. Zhang YB, Howitt J, McCorkle S, Lawrence P, Springer K, Freimuth P. Protein aggregation during overexpression limited by peptide extensions with large net negative charge. Protein Expr Purif. 2004;36:207–16.

    Article  PubMed  CAS  Google Scholar 

  7. Nakanishi K, Sakiyama T, Imamura K. On the adsorption of proteins on solid surfaces, a common but very complicated phenomenon. J Biosci Bioeng. 2001;91:233–44.

    PubMed  CAS  Google Scholar 

  8. Franco R, Daniela G, Fabrizio M, Ilaria G, Detlev H. Influence of osmolarity and pH increase to achieve a reduction of monoclonal antibodies aggregates in a production process. Cytotechnology. 1999;29:11–25.

    Article  PubMed  CAS  Google Scholar 

  9. Arosio P, Barolo G, Muller-Spath T, Wu H, Morbidelli M. Aggregation stability of a monoclonal antibody during downstream processing. Pharm Res. 2011;28:1884–94.

    Article  PubMed  CAS  Google Scholar 

  10. Biddlecombe JG, Craig AV, Zhang H, Uddin S, Mulot S, Fish BC, Bracewell DG. Determining antibody stability: creation of solid–liquid interfacial effects within a high shear environment. Biotechnol Prog. 2007;23:1218–22.

    PubMed  CAS  Google Scholar 

  11. Wang W, Singh S, Zeng DL, King K, Nema S. Antibody structure, instability, and formulation. J Pharm Sci. 2007;96:1–26.

    Article  PubMed  CAS  Google Scholar 

  12. Rosenberg AS. Effects of protein aggregates: an immunologic perspective. AAPS J. 2006;8:E501–7.

    Article  PubMed  Google Scholar 

  13. Vazquez E, Corchero JL, Villaverde A. Post-production protein stability: trouble beyond the cell factory. Microb Cell Fact. 2011;10:10–60.

    Article  Google Scholar 

  14. Gomez N, Subramanian J, Ouyang J, Nguyen MD, Hutchinson M, Sharma VK, Lin AA, Yuk IH. Culture temperature modulates aggregation of recombinant antibody in cho cells. Biotechnol Bioeng (2011).

  15. Quan C, Alcala E, Petkovska I, Matthews D, Canova-Davis E, Taticek R, Ma S. A study in glycation of a therapeutic recombinant humanized monoclonal antibody: where it is, how it got there, and how it affects charge-based behavior. Anal Biochem. 2008;373:179–91.

    Article  PubMed  CAS  Google Scholar 

  16. Li S, Schoneich C, Borchardt RT. Chemical instability of protein pharmaceuticals: mechanisms of oxidation and strategies for stabilization. Biotechnol Bioeng. 1995;48:490–500.

    Article  PubMed  CAS  Google Scholar 

  17. Liu H, Gaza-Bulseco G, Faldu D, Chumsae C, Sun J. Heterogeneity of monoclonal antibodies. J Pharm Sci. 2008;97:2426–47.

    Article  PubMed  CAS  Google Scholar 

  18. Geiger T, Clarke S. Deamidation, isomerization, and racemization at asparaginyl and aspartyl residues in peptides. Succinimide-linked reactions that contribute to protein degradation. J Biol Chem. 1987;262:785–94.

    PubMed  CAS  Google Scholar 

  19. Kim JY, Lee GM. CHO cells in biotechnology for production of recombinant proteins: current state and further potential. Appl Microbiol Biotechnol. 2012;93(3):917–30.

    Article  PubMed  CAS  Google Scholar 

  20. Becker E, Florin L, Pfizenmaier K, Kaufmann H. An XBP-1 dependent bottle-neck in production of IgG subtype antibodies in chemically defined serum-free Chinese hamster ovary (CHO) fed-batch processes. J Biotechnol. 2008;135:217–23.

    Article  PubMed  CAS  Google Scholar 

  21. Kiese S, Papppenberger A, Friess W, Mahler HC. Shaken, not stirred: mechanical stress testing of an IgG1 antibody. J Pharm Sci. 2008;97:4347–66.

    Article  PubMed  CAS  Google Scholar 

  22. Ridgway JB, Presta LG, Carter P. ‘Knobs-into-holes’ engineering of antibody CH3 domains for heavy chain heterodimerization. Protein Eng. 1996;9:617–21.

    Article  PubMed  CAS  Google Scholar 

  23. Mahler HC, Muller R, Friess W, Delille A, Matheus S. Induction and analysis of aggregates in a liquid IgG1-antibody formulation. Eur J Pharm Biopharm. 2005;59:407–17.

    Article  PubMed  CAS  Google Scholar 

  24. Pace CN, Vajdos F, Fee L, Grimsley G, Gray T. How to measure and predict the molar absorption coefficient of a protein. Protein Sci. 1995;4:2411–23.

    Article  PubMed  CAS  Google Scholar 

  25. Maa YF, Hsu CC. Protein denaturation by combined effect of shear and air-liquid interface. Biotechnol Bioeng. 1997;54:503–12.

    Article  PubMed  CAS  Google Scholar 

  26. Thomas CR, Geer D. Effects of shear on proteins in solution. Biotechnol Lett. 2011;33:443–56.

    Article  PubMed  CAS  Google Scholar 

  27. Ishikawa T, Kobayashi N, Osawa C, Sawa E, Wakamatsu K. Prevention of stirring-induced microparticle formation in monoclonal antibody solutions. Biol Pharm Bull. 2010;33:1043–6.

    Article  PubMed  CAS  Google Scholar 

  28. Heads JT, Adams R, D’Hooghe LE, Page MJT, Humphreys DP, Popplewell AG, Henry AJ. Relative stabilities of IgG1 and IgG4 Fab domains: influence of the light-heavy interchain disulfide bond architecture. Protein Sci. 2012;21:1315–22.

    Article  PubMed  CAS  Google Scholar 

  29. Ionescu RM, Vlasak J, Price C, Kirchmeier M. Contribution of variable domains to the stability of humanized IgG1 monoclonal antibodies. J Pharm Sci. 2008;97:1414–26.

    Article  PubMed  CAS  Google Scholar 

  30. Li F, Vijayasankaran N, Shen AY, Kiss R, Amanullah A. Cell culture processes for monoclonal antibody production. MAbs. 2010;2:466–79.

    Article  PubMed  Google Scholar 

  31. Chou DK, Krishnamurthy R, Randolph TW, Carpenter JF, Manning MC. Effects of Tween 20 and Tween 80 on the stability of Albutropin during agitation. J Pharm Sci. 2005;94:1368–81.

    Article  PubMed  CAS  Google Scholar 

  32. Bam NB, Cleland JL, Yang J, Manning MC, Carpenter JF, Kelley RF, Randolph TW. Tween protects recombinant human growth hormone against agitation-induced damage via hydrophobic interactions. J Pharm Sci. 1998;87:1554–9.

    Article  PubMed  CAS  Google Scholar 

  33. Bahrami A, Shojaosadati SA, Khalilzadeh R, Mohammadian J, Farahani EV, Masoumian MR. Prevention of human granulocyte colony-stimulating factor protein aggregation in recombinant Pichia pastoris fed-batch fermentation using additives. Biotechnol Appl Biochem. 2009;52:141–8.

    Article  PubMed  CAS  Google Scholar 

  34. Chisti Y. Animal-cell damage in sparged bioreactors. Trends Biotechnol. 2000;18:420–32.

    Article  PubMed  CAS  Google Scholar 

  35. Clincke MF, Guedon E, Yen FT, Ogier V, Roitel O, Goergen JL. Effect of surfactant pluronic F-68 on CHO cell growth, metabolism, production, and glycosylation of human recombinant IFN-gamma in mild operating conditions. Biotechnol Prog. 2011;27:181–90.

    Article  PubMed  CAS  Google Scholar 

  36. Gigout A, Buschmann MD, Jolicoeur M. The fate of Pluronic F-68 in chondrocytes and CHO cells. Biotechnol Bioeng. 2008;100:975–87.

    Article  PubMed  CAS  Google Scholar 

  37. Vlasak J, Ionescu R. Heterogeneity of monoclonal antibodies revealed by charge-sensitive methods. Curr Pharm Biotechnol. 2008;9:468–81.

    Article  PubMed  CAS  Google Scholar 

  38. Zheng JY, Janis LJ. Influence of pH, buffer species, and storage temperature on physicochemical stability of a humanized monoclonal antibody LA298. Int J Pharm. 2006;308:46–51.

    Article  PubMed  CAS  Google Scholar 

  39. Vermeer AW, Norde W. The thermal stability of immunoglobulin: unfolding and aggregation of a multi-domain protein. Biophys J. 2000;78:394–404.

    Article  PubMed  CAS  Google Scholar 

  40. Wang W, Nema S, Teagarden D. Protein aggregation–pathways and influencing factors. Int J Pharm. 2010;390:89–99.

    Article  PubMed  CAS  Google Scholar 

  41. Schaefer JV, Pluckthun A. Engineering aggregation resistance in IgG by two independent mechanisms: lessons from comparison of Pichia pastoris and mammalian cell expression. J Mol Biol. 2012;417:309–35.

    Article  PubMed  CAS  Google Scholar 

  42. King AC, Woods M, Liu W, Lu Z, Gill D, Krebs MR. High-throughput measurement, correlation analysis, and machine-learning predictions for pH and thermal stabilities of Pfizer-generated antibodies. Protein Sci. 2011;20:1546–57.

    Article  PubMed  CAS  Google Scholar 

  43. Abbas SA, Sharma VK, Patapoff TW, Kalonia DS. Opposite effects of polyols on antibody aggregation: thermal versus mechanical stresses. Pharm Res. 2012;29:683–94.

    Article  PubMed  CAS  Google Scholar 

  44. Cartaya OA. Serum-free cell culture media. United States Patent 4,205,126, 1980.

  45. Wang W. Instability, stabilization, and formulation of liquid protein pharmaceuticals. Int J Pharm. 1999;185:129–88.

    Article  PubMed  CAS  Google Scholar 

  46. Randolph TW, Jones LS. Surfactant-protein interactions. Pharm Biotechnol. 2002;13:159–75.

    Article  PubMed  CAS  Google Scholar 

  47. van der Pol L, Tramper J. Shear sensitivity of animal cells from a culture-medium perspective. Trends Biotechnol. 1998;16:323–8.

    Article  PubMed  Google Scholar 

  48. Manning MC, Chou DK, Murphy BM, Payne RW, Katayama DS. Stability of protein pharmaceuticals: an update. Pharm Res. 2010;27:544–75.

    Article  PubMed  Google Scholar 

  49. Gandhi S, Ren D, Xiao G, Bondarenko P, Sloey C, Ricci MS, Krishnan S. Elucidation of degradants in acidic peak of cation exchange chromatography in an IgG1 monoclonal antibody formed on long-term storage in a liquid formulation. Pharm Res. 2012;29:209–24.

    Article  PubMed  CAS  Google Scholar 

  50. Harris RJ, Kabakoff B, Macchi FD, Shen FJ, Kwong M, Andya JD, Shire SJ, Bjork N, Totpal K, Chen AB. Identification of multiple sources of charge heterogeneity in a recombinant antibody. J Chromatogr B Biomed Sci Appl. 2001;752:233–45.

    Article  PubMed  CAS  Google Scholar 

  51. Patel K, Borchardt RT. Chemical pathways of peptide degradation. II. Kinetics of deamidation of an asparaginyl residue in a model hexapeptide. Pharm Res. 1990;7:703–11.

    Article  PubMed  CAS  Google Scholar 

  52. Kaneko Y, Sato R, Aoyagi H. Changes in the quality of antibodies produced by Chinese hamster ovary cells during the death phase of cell culture. J Biosci Bioeng. 2010;109:281–7.

    Article  PubMed  CAS  Google Scholar 

  53. Huang L, Lu J, Wroblewski VJ, Beals JM, Riggin RM. In vivo deamidation characterization of monoclonal antibody by LC/MS/MS. Anal Chem. 2005;77:1432–9.

    Article  PubMed  CAS  Google Scholar 

  54. Liu YD, van Enk JZ, Flynn GC. Human antibody Fc deamidation in vivo. Biologicals. 2009;37:313–22.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments and Disclosures

We would like to thank Carolin Lucia and Katharina Didzus from Roche Penzberg for their support with bioreactor stress experiments, Sabrina Mahlack for her support with MAb4.2 purification, and Hubert Kettenberger, Holger Kley and Xaver Reiser for their support with DLS and DSC measurements. We would also like to thank Alexandra Schindl for carrying out the shaking stress experiments and Robert Puskeiler for support with calculations of physical parameters of the stirring stress models.

We are also grateful to Jörg Hörnschemeyer and Jonas Fast of Roche Basel for sharing information about the identity of cIEX peaks.

S.D, F.H. F.L. O.P. and K.L are all employees of Roche at the time of publication. The remaining authors declare no competing financial interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kurt Lang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dengl, S., Wehmer, M., Hesse, F. et al. Aggregation and Chemical Modification of Monoclonal Antibodies under Upstream Processing Conditions. Pharm Res 30, 1380–1399 (2013). https://doi.org/10.1007/s11095-013-0977-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-013-0977-8

KEY WORDS

Navigation