Skip to main content
Log in

Maize cytosolic NADP-malic enzyme (ZmCytNADP-ME): a phylogenetically distant isoform specifically expressed in embryo and emerging roots

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

Two maize plastidic NADP-malic enzyme isoforms have been characterized: the bundle sheath-located photosynthetic isoform (ZmC4-NADP-ME) and a constitutively expressed one (Zm-nonC4-NADP-ME). In this work, the characterization of the first maize cytosolic NADP-ME (ZmCytNADP-ME) is presented, which transcript is exclusively found in embryo and emerging roots. ZmCytNADP-ME expression in roots decreases with development, while Zm-nonC 4 -NADP-ME increases concomitantly. On the other hand, ZmCytNADP-ME accumulation is differentially modulated by several stress conditions and shows coordination with that of Zm-nonC 4 -NADP-ME in maize young roots. Recombinant ZmCytNADP-ME displays clearly distinct kinetic parameters and metabolic regulation than the plastidic isoforms. The particular properties and the specific-expression pattern of this novel isoform suggest that it may be involved in the control of cytosolic malate levels in emerging roots, e.g. during hypoxia. ZmCytNADP-ME is phylogenetically related to other cytosolic mono and dicot NADP-MEs, and data indicate that it belongs to an ancestral unique group among plant NADP-MEs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Buchanan CD, Lim S, Salzman RA, Kagiampakis I, Morishige DT, Weers BD et al (2005) Shorgum bicolor’s transcriptome response to dehydration, high salinity and ABA. Plant Mol Biol 58:699–720. doi:10.1007/s11103-005-7876-2

    Article  PubMed  CAS  Google Scholar 

  • Casati P, Drincovich MF, Edwards GE, Andreo CS (1999) Malate metabolism through NADP-malic enzyme in plant defense. Photosynth Res 61:99–105. doi:10.1023/A:1006209003096

    Article  CAS  Google Scholar 

  • Chang K, Roberts JK (1991) Cytoplasmic malate levels in maize root tips during K+ ion uptake determined by 13C-NMR spectroscopy. Biochim Biophys Acta 1092:29–34

    Article  PubMed  CAS  Google Scholar 

  • Chi W, Jianghua Y, Naihu W, Zhang F (2004) Four rice genes encoding NADP malic enzyme exhibit distinct expression profiles. Biosci Biotechnol Biochem 68:1865–1874. doi:10.1271/bbb.68.1865

    Article  PubMed  CAS  Google Scholar 

  • Chia DW, Yoder TJ, Reiter WD, Gibson SI (2000) Fumaric acid: an overlooked form of fixed carbon in Arabidopsis and other plant species. Planta 211:743–751. doi:10.1007/s004250000345

    Article  PubMed  CAS  Google Scholar 

  • Cheng Y, Long M (2007) A cytosolic NADP-malic enzyme gene from rice (Oriza sativa L.) confers salt tolerance in transgenic Arabidopsis. Biotechnol Lett 29:1129–1134. doi:10.1007/s10529-007-9347-0

    Article  PubMed  CAS  Google Scholar 

  • Detarsio E, Gerrard Wheeler M, Campos Bermúdez MA, Andreo CS, Drincovich MF (2003) Maize C4 NADP-malic enzyme: Expression in E. coli and characterization of site-directed mutants at the putative nucleotide binding sites. J Biol Chem 278:13757–13764. doi:10.1074/jbc.M212530200

    Article  PubMed  CAS  Google Scholar 

  • Detarsio E, Alvarez C, Saigo M, Andreo CS, Drincovich MF (2007) Identification of domains implicated in tetramerization and malate inhibition of maize C4 NADP-malic enzyme by analysis of chimerical proteins. J Biol Chem 282:6053–6060. doi:10.1074/jbc.M609436200

    Article  PubMed  CAS  Google Scholar 

  • Dieuaide-Noubhani M, Raffard G, Canioni P, Pradet A, Raymond P (1995) Quantification of compartmented metabolic fluxes in maize root tips using isotope distribution from 13C- or 14C-labeled glucose. J Biol Chem 270:13147–13159. doi:10.1074/jbc.270.22.13147

    Article  PubMed  CAS  Google Scholar 

  • Drincovich MF, Casati P, Andreo CS (2001) NADP-malic enzyme from plants: a ubiquitous enzyme involved in different metabolic pathways. FEBS Lett 290:1–6. doi:10.1016/S0014-5793(00)02331-0

    Article  Google Scholar 

  • Edwards GE, Andreo CS (1992) NADP-malic enzyme from plants. Phytochemistry 31:1845–1857. doi:10.1016/0031-9422(92)80322-6

    Article  PubMed  CAS  Google Scholar 

  • Edwards S, Nguyen B-T, Do B, Roberts JKM (1998) Contribution of malic enzyme, pyruvate kinase, phosphoenolpyruvate carboxylase, and the Krebs Cycle to respiration and biosynthesis and to intracellular pH regulation during hypoxia in maize root tips observed by nuclear resonance imaging and gas chromatography-mass spectrometry. Plant Physiol 116:1073–1081. doi:10.1104/pp.116.3.1073

    Article  PubMed  CAS  Google Scholar 

  • Emanuelsson O, Brunak S, von Heijne G, Nielsen H (2007) Locating proteins in the cell using TargetP, SignalP, and related tools. Nat Protoc 2:953–971. doi:10.1038/nprot.2007.131

    Article  PubMed  CAS  Google Scholar 

  • Fahnenstich H, Saigo M, Niessen M, Drincovich MF, Zanor MI, Fernie A et al (2007) Low levels of malate and fumarate cause accelerated senescence during extended darkness in Arabidopsis thaliana overexpressing maize C4 NADP-malic enzyme. Plant Physiol 145:640–652. doi:10.1104/pp.107.104455

    Article  PubMed  CAS  Google Scholar 

  • Franke KE, Adams DO (1995) Cloning a full-length cDNA for malic enzyme (EC 1.1.1.40) from grape berries. Plant Physiol 107:1009–1010. doi:10.1104/pp.107.3.1009

    Article  PubMed  CAS  Google Scholar 

  • Gerrard Wheeler MC, Tronconi MA, Drincovich MF, Andreo CS, Flügge UI, Maurino VG (2005) A comprehensive analysis of the NADP-malic enzyme gene family of Arabidopsis. Plant Physiol 139:39–51. doi:10.1104/pp.105.065953

    Article  CAS  Google Scholar 

  • Gerrard Wheeler MC, Arias CL, Tronconi MA, Maurino VG, Andreo CS, Drincovich MF (2008) Arabidopsis thaliana NADP-malic enzyme isoforms: high degree of identity but clearly distinct properties. Plant Mol Biol 67:231–242

    Article  CAS  Google Scholar 

  • Goodenough PW, Prosser IM, Young K (1985) NADP linked malic enzyme and malate metabolism in aging tomato fruit. Phytochemistry 24:1157–1162. doi:10.1016/S0031-9422(00)81093-6

    Article  CAS  Google Scholar 

  • Grima-Pettenati J, Chriqui D, Sarni-Manchado P, Prinsen E (1989) Stimulation of lignification in neoformed calli induced by Agrobacterium rhizogenes on bean hypocotyls. Plant Sci 61:179–188. doi:10.1016/0168-9452(89)90222-7

    Article  CAS  Google Scholar 

  • Jones DL (1998) Organic acids in the rhizosphere—a critical review. Plant Soil 205:25–44. doi:10.1023/A:1004356007312

    Article  CAS  Google Scholar 

  • Joshi C, Zhou H, Huang X, Chiang VL (1997) Context sequences of translation initiation codon in plants. Plant Mol Biol 35:993–1001. doi:10.1023/A:1005816823636

    Article  PubMed  CAS  Google Scholar 

  • Kang F, Rawsthorne S (1994) Starch and fatty acid synthesis in plastids from developing embryos of oilseed rape (Brassica napus L.). Plant J 6:795–805. doi:10.1046/j.1365-313X.1994.6060795.x

    Article  CAS  Google Scholar 

  • Kochetov AV, Sarai A (2004) Translational polymorphism as a potential source of plant proteins variety in Arabidopsis thaliana. Bioinformatics 20:445–447. doi:10.1093/bioinformatics/btg443

    Article  PubMed  CAS  Google Scholar 

  • Kozak M (1987) An analysis of 5′-noncoding sequences from 699 vertebrate messenger RNAs. Nucleic Acids Res 15:8125–8148. doi:10.1093/nar/15.20.8125

    Article  PubMed  CAS  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685. doi:10.1038/227680a0

    Article  PubMed  CAS  Google Scholar 

  • Lai LB, Wang L, Nelson TM (2002a) Distinct byut conserved functions for two chloroplastic NADP-malic enzyme isoforms in C3 and C4 Flaveria species. Plant Physiol 128:125–139. doi:10.1104/pp.128.1.125

    Article  PubMed  CAS  Google Scholar 

  • Lai LB, Tausta L, Nelson TM (2002b) Differential regulation of transcripts encoding cytosolic NADP-malic enzyme in C3 and C4 Flaveria species. Plant Physiol 128:140–149. doi:10.1104/pp.128.1.140

    Article  PubMed  CAS  Google Scholar 

  • Laporte M, Shen B, Tarczynski MC (2002) Engineering for drought avoidance: expression of maize NADP-malic enzyme in tobacco results in altered stomatal function. J Exp Bot 53:699–705. doi:10.1093/jexbot/53.369.699

    Article  PubMed  CAS  Google Scholar 

  • Liu H, Han H, Li J, Wong L (2005) DNAFSMiner: a web-based software toolbox to recognize two types of functional sites in DNA sequences. Bioinformatics 21:671–673. doi:10.1093/bioinformatics/bth437

    Article  PubMed  CAS  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT. Methods 25:402–408. doi:10.1006/meth.2001.1262

    Article  PubMed  CAS  Google Scholar 

  • Lopez Becerra E, Puigdomenech P, Stiefel V (1998) A gene coding for a malic enzyme expressed in the embryo root epidermis from Zea mays (Accession No. AJ224847) (PGR98-081). Plant Physiol 117:332

    Google Scholar 

  • Maurino VG, Drincovich MF, Andreo CS (1996) NADP-malic enzyme isoforms in maize leaves. Biochem Mol Biol Int 38:239–250

    PubMed  CAS  Google Scholar 

  • Maurino VG, Drincovich MF, Casati P, Andreo CS, Edwards GE, Ku MSB et al (1997) NADP-malic enzyme: immunolocalization in different tissues of the C4 plant maize and the C3 plant wheat. J Exp Bot 308:799–811. doi:10.1093/jxb/48.3.799

    Article  Google Scholar 

  • Maurino VG, Saigo M, Andreo CS, Drincovich MF (2001) Non-photosynthetic NADP-malic enzyme from maize: a constitutively expressed enzyme that responds to plant defense inducers. Plant Mol Biol 45:409–420. doi:10.1023/A:1010665910095

    Article  PubMed  CAS  Google Scholar 

  • Maurino VG, Grube E, Zielinski J, Schild A, Fischer K, Flügge U-I (2006) Identification and expression analysis of twelve members of the nucleobase-ascorbate transporter (NAT) gene family in Arabidopsis thaliana. Plant Cell Physiol 47:1381–1393. doi:10.1093/pcp/pcl011

    Article  PubMed  CAS  Google Scholar 

  • Plaxton WC (1989) Molecular and immunological characterization of plastid and cytosolic pyruvate kinase isozymes from castor-oil-plant endosperm and leaf. Eur J Biochem 181:443–451. doi:10.1111/j.1432-1033.1989.tb14745.x

    Article  PubMed  CAS  Google Scholar 

  • Rangan L, Vogel C, Srivastava A (2008) Analysis of context sequence surrounding translation initiation site from complete genome of model plants. Mol Biotechnol. doi:10.1007/s12033-008-9036-9

  • Roberts JKM, Hooks MA, Miaullis AP, Edwards S, Webster C (1992) Contribution of malate and amino acid metabolism to cytoplasmic pH regulation in hypoxic maize root tips studied using nuclear magnetic resonance spectroscopy. Plant Physiol 98:480–487

    PubMed  CAS  Google Scholar 

  • Rothermel BA, Nelson T (1989) Primary structure of the maize NADP-dependent malic enzyme. J Biol Chem 264:19587–19592

    PubMed  CAS  Google Scholar 

  • Saigo M, Bologna F, Maurino VG, Detarsio E, Andreo CS, Drincovich MF (2004) Maize recombinant non-C4 NADP-malic enzyme: a novel dimeric malic enzyme with high specific activity. Plant Mol Biol 55:97–107. doi:10.1007/s11103-004-0472-z

    Article  PubMed  CAS  Google Scholar 

  • Schaaf J, Walter MH, Hess D (1995) Primary metabolism in plant defense. Regulation of a bean malic enzyme gene promoter in transgenic tobacco by developmental and environmental cues. Plant Physiol 108:949–960

    PubMed  CAS  Google Scholar 

  • Sedmak JJ, Grossberg SE (1977) A rapid, sensitive, and versatile assay for protein using Coomassie brillant blue G250. Anal Biochem 79:544–552. doi:10.1016/0003-2697(77)90428-6

    Article  PubMed  CAS  Google Scholar 

  • Smith RG, Gauthier DA, Dennis DT, Turpin DH (1992) Malate- and pyruvate-dependent fatty acid synthesis in leukoplasts from developing castor endosperm. Plant Physiol 99:1233–1238

    Article  Google Scholar 

  • Tausta SL, Coyle HM, Rothermel B, Stiefel V, Nelson T (2002) Maize C4 and non-C4 NADP-dependent malic enzymes are encoded by distinct genes derived from a plastid-localized ancestor. Plant Mol Biol 50:635–652. doi:10.1023/A:1019998905615

    Article  PubMed  CAS  Google Scholar 

  • van Doorsselaere J, Villarroel R, van Montagu M, Inzé D (1991) Nucleotide sequence of a cDNA encoding malic enzyme from poplar. Plant Physiol 96:1385–1386

    PubMed  Google Scholar 

  • Walter MH, Grima-Pettenatti J, Feuillet C (1994) Characterization of a bean (Phaseolus vulgaris L.) malic enzyme gene. Eur J Biochem 224:999–1009. doi:10.1111/j.1432-1033.1994.t01-1-00999.x

    Article  PubMed  CAS  Google Scholar 

  • Zhang B, Ramonell K, Somerville S, Stacey G (2002) Characterization of early, chitin-induced gene expression in Arabidopsis. Mol Plant Microbe Interact 15:963–970. doi:10.1094/MPMI.2002.15.9.963

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was funded by grants from CONICET and Agencia Nacional de Promoción Científica y Tecnológica to MFD and CSA. Further support was provided by the Deutsche Forschungsgemeinschaft to VGM. MFD and CSA are members of the Researcher Career of CONICET. CA and GM are fellows of the same institution.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to María F. Drincovich.

Additional information

Enrique Detarsio and Verónica G. Maurino contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Detarsio, E., Maurino, V.G., Alvarez, C.E. et al. Maize cytosolic NADP-malic enzyme (ZmCytNADP-ME): a phylogenetically distant isoform specifically expressed in embryo and emerging roots. Plant Mol Biol 68, 355–367 (2008). https://doi.org/10.1007/s11103-008-9375-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-008-9375-8

Keywords

Navigation