Skip to main content

Advertisement

Log in

Dynamics of the water extractable organic carbon pool during mineralisation in soils from a Douglas fir plantation and an oak-beech forest—an incubation experiment

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

In the context of land use change, the dynamics of the water extractable organic carbon (WEOC) pool and CO2 production were studied in soil from a native oak-beech forest and a Douglas fir plantation during a 98-day incubation at a range of temperatures from 8°C to 28°C. The soil organic carbon, water contents and mineralisation rates of soil samples from the 0–5 cm layer were higher in the native forest than in the Douglas fir plantation. During incubation, a temperature-dependent shift in the δ13C of respired CO2 was observed, suggesting that different carbon compounds were mineralised at different temperatures. The initial size of the WEOC pool was not affected by forest type. The WEOC pool size of samples from the native forest did not change consistently over time whereas it decreased significantly in samples from the Douglas plantation, irrespective of soil temperature. No clear changes in the δ13C values of the WEOC were observed, irrespective of soil origin. The fate of the WEOC, independent of soil organic carbon content or mineralisation rates, appeared to relate to forest types. Replacement of native oak-beech forest with Douglas fir plantation impacts carbon input to the soil, mineralisation rates and production of dissolved organic carbon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Agren GI, Bosatta E, Balesdent J (1996) Isotope discrimination during decomposition of organic matter: a theoretical analysis. Soil Sci Soc Am J 60:1121–1126

    Article  Google Scholar 

  • Aiken GR, Mc Knight DM, Wershaw RL, Mac Carthy P (1985) Humic substances. In: J Wiley and Sons (ed) Soils, sediment and water. Environment, New York, pp 153–167

    Google Scholar 

  • Amiotte-Suchet P, Linglois N, Leveque J, Andreux F (2007) 13C composition of dissolved organic carbon in upland forested catchments of the Morvan Mountains (France): Influence of coniferous and deciduous vegetation. J Hydrol 335:354–363

    Article  Google Scholar 

  • Amundson R, Stern L, Baisden T, Wang Y (1998) The isotopic composition of soil and soil-respired CO2. Geoderma 82:83–114

    Article  Google Scholar 

  • Andersson S, Nilsson SI, Saetre P (2000) Leaching of dissolved organic carbon (DOC) and dissolved organic nitrogen (DON) in mor humus as affected by temperature and pH. Soil Biol Biochem 32:1–10

    Article  CAS  Google Scholar 

  • Andreux F, Cerri C, Vose PB and Vitorello VA (1990) Potential of stable isotope, 15N and 13C, methods for determining imput and turnover in soils. In: Harrisson AF, Ineson P, Heal OW (eds) Nutrient cycling in terrestrial ecosystems, (pp 259–275)

  • Andreux F, Roux F, Linglois N, Nguyen T, Amiotte-Suchet P, Lévêque J (2002) Impact of changing forest management on soil organic matter in low mountain acid media. In: Violante A, Huang PM, Bollag J-M, Gianfreda L (eds) Soil mineral-organic matter-microorganism interactions and ecosystem health. Elsevier, Amsterdam, pp 383–407

    Chapter  Google Scholar 

  • Andrews JA, Matamala R, Westover KM, Schlesinger WH (2000) Temperature effects on the diversity of soil heterotrophs and the [delta]13C of soil-respired CO2. Soil Biol Biochem 32:699–706

    Article  CAS  Google Scholar 

  • Baldock JA, Nelson PN (2000) Soil organic matter. In: Sumner ME (ed) Handbook of soil science. CRC, Boca Raton USA, pp B25–B84

    Google Scholar 

  • Balesdent J, Mariotti A (1996) Measurements of soil organic matter turnover using 13C abundance. In: Boutton TW, Yamashi S (eds) Mass spectrometry of soils, pp 83–111

  • Bishop K, Pettersson C (1996) Organic carbon in the boreal spring flood from adjacent subcatchments. Environ Int 22:535–540

    Article  CAS  Google Scholar 

  • Blair N, Leu A, Munoz E, Olsen J, Kwong E, Des Marais D (1985) Carbon isotopic fractionation in heterotrophic microbial metabolism. Appl Environ Microbiol 50:996–1001

    CAS  PubMed  Google Scholar 

  • Boutton TW (1991) Stable carbon isotope ratios of natural materials: 1. Sample preparation and mass spectrometric analysis. In: Coleman DC, Fry B (eds) Carbon isotope techniques. Academic, pp 155–169

  • Cabaniss SE, Shuman MS (1988) Copper binding by dissolved organic matter: I. Suwannee River fulvic acid equilibria. Geochim Cosmochim Acta 52:185–193

    Article  CAS  Google Scholar 

  • Chantigny MH (2003) Dissolved and water-extractable organic matter in soils: a review on the influence of land use and management practices. Geoderma 113:357–380

    Article  CAS  Google Scholar 

  • Chapman PJ, Williams BL, Hawkins A (2001) Influence of temperature and vegetation cover on soluble inorganic and organic nitrogen in a spodosol. Soil Biol Biochem 33:1113–1121

    Article  CAS  Google Scholar 

  • Chow AT, Tanji KK, Gao S, Dahlgren RA (2006) Temperature, water content and wet-dry cycle effects on DOC production and carbon mineralization in agricultural peat soils. Soil Biol Biochem 38:477–488

    Article  CAS  Google Scholar 

  • Christ MJ, David MB (1996) Temperature and moisture effects on the production of dissolved organic carbon in a Spodosol. Soil Biol Biochem 28:1191–1199

    Article  CAS  Google Scholar 

  • Cookson WR, Osman M, Marschner P, Abaye DA, Clark I, Murphy DV, Stockdale EA, Watson CA (2007) Controls on soil nitrogen cycling and microbial community composition across land use and incubation temperature. Soil Biol Biochem 39:744–756

    Article  CAS  Google Scholar 

  • Coplen T, Kendall C, Hopple J (1983) Comparison of stable isotope reference samples. Nature 302:236–238

    Article  CAS  Google Scholar 

  • Corvasce M, Zsolnay A, D’Orazio V, Lopez R, Miano TM (2006) Characterization of water extractable organic matter in a deep soil profile. Chemosphere 62:1583–1590

    Article  CAS  PubMed  Google Scholar 

  • Cote L, Brown S, Pare D, Fyles J, Bauhus J (2000) Dynamics of carbon acid nitrogen mineralization in relation to stand type, stand age and soil texture in the boreal mixedwood. Soil Biol Biochem 32:1079–1090

    Article  CAS  Google Scholar 

  • Crow SE, Sulzman EW, Rugh WD, Bowden RD, Lajtha K (2006) Isotopic analysis of respired CO2 during decomposition of separated soil organic matter pools. Soil Biol Biochem 38:3279–3291

    Article  CAS  Google Scholar 

  • Dahlén J, Bertilsson S, Pettersson C (1996) Effects of UV-A irradiation on dissolved organic matter in humic surface waters. Environment International. The HUMEX/HUMOR Project and Humic Substances 22:501–506

    Google Scholar 

  • Dawson JJC, Bakewell C, Billett MF (2001) Is in-stream processing an important control on spatial changes in carbon fluxes in headwater catchments? Sci Total Environ 265:153–167

    Article  CAS  PubMed  Google Scholar 

  • Desjardins T, Andreux F, Volkoff B, Cerri C (1994) Organic carbon and 13C contents in soils and soil-size fractions, and their changes due to deforestation and pasture installation in eastern Amazonia. Geoderma 61:103–118

    Article  Google Scholar 

  • Fernandez I, Mahieu N, Cadisch G (2003) Carbon isotopic fractionation during decomposition of plant materials of different quality. Global Biogeochem Cy 17

  • Fontaine S, Barot S, Barre P, Bdioui N, Mary B, Rumpel C (2007) Stability of organic carbon in deep soil layers controlled by fresh carbon supply. Nature 450:277–U210

    Article  CAS  PubMed  Google Scholar 

  • Garcia-Pausas J, Casals P, Camarero L, Huguet C, Thompson R, Sebastià M-T, Romanyà J (2008) Factors regulating carbon mineralization in the surface and subsurface soils of Pyrenean mountain grasslands. Soil Biol Biochem 40:2803–2810

    Article  CAS  Google Scholar 

  • Gödde M, David MB, Christ MJ, Kaupenjohann M, Vance GF (1996) Carbon mobilization from the forest floor under red spruce in the northeastern U.S.A. Soil Biol Biochem 28:1181–1189

    Article  Google Scholar 

  • Gonfiantini R (1984) I.A.E.A. advisory group meeting on stable isotope reference samples for geochemical and hydrological investigations: Vienna, Austria, September 19–21, 1983. J Hydrol 72:205

    Article  Google Scholar 

  • Grieve IC, Marsden RL (2001) Effects of forest cover and topographic factors on TOC and associated metals at various scales in western Scotland. Sci Total Environ 265:143–151

    Article  CAS  PubMed  Google Scholar 

  • Hagedorn F, Saurer M, Blaser P (2004) A 13C tracer study to identify the origin of dissolved organic carbon in forested mineral soils. Eur J Soil Sci 55:91–100

    Article  Google Scholar 

  • Hedin LO, Armesto JJ, Johnson AH (1995) Patterns of nutrient loss from unpolluted old-growth temperate forest: evalutation of biogeochemical theory. Ecology 76:493–509

    Article  Google Scholar 

  • Herbert BE, Bertsch PM (1995) Characterization of dissolved and colloidal organic matter in soil solutions: A review. In: Kelly JM, Mcfee WW (eds) Carbon forms and functions in forest soils. Madison, Soil Science Society of America, pp 63–88

    Google Scholar 

  • Hernesmaa A, Bjorklof K, Kiikkila O, Fritze H, Haahtela K, Romantschuk M (2005) Structure and function of microbial communities in the rhizosphere of Scots pine after tree-felling. Soil Biol Biochem 37(4):777–785

    Article  CAS  Google Scholar 

  • Hishi T, Hirobe M, Tateno R, Takeda H (2004) Spatial and temporal patterns of water-extractable organic carbon (WEOC) of surface mineral soil in a cool temperate forest ecosystem. Soil Biol Biochem 36:1731–1737

    Article  CAS  Google Scholar 

  • Hongve D (1999) Production of dissolved organic carbon in forested catchments. J Hydrol 224:91–99

    Article  CAS  Google Scholar 

  • Jones DL, Willet VB (2006) Experimental evaluation of methods to quantify dissolved organic nitrogen (DON) and dissolved organic carbon (DOC) in soil. Soil Biol Biochem 9

  • Kadono A, Funakawa S, Kosaki T (2008) Factors controlling mineralization of soil organic matter in the Eurasian steppe. Soil Biol Biochem 40:947–955

    Article  CAS  Google Scholar 

  • Kaiser K, Guggenberger G, Haumaier L, Zech W (2001) Seasonal variations in the chemical composition of dissolved organic matter in organic forest floor layer leachates of old-growth Scots pine (Pinus sylvestris L.) and European beech (Fagus sylvatica L.) stands in northeastern Bavaria, Germany. Biogeochemistry 55:103–143

    Article  CAS  Google Scholar 

  • Kalbitz K, Kaiser K (2003) Ecological aspects of dissolved organic matter in soils. Geoderma 113:177–178

    Article  Google Scholar 

  • Khomutova TE, Shirshova LT, Tinz S, Rolland W, Richter J (2000) Mobilization of DOC from sandy loamy soils under different land use (Lower Saxony, Germany). Plant Soil 219:13–19

    Article  CAS  Google Scholar 

  • Kiikkilä O, Kitunen V, Smolander A (2005) Degradability of dissolved soil organic carbon and nitrogen in relation to tree species. FEMS Microbiology Ecology—Microbial Life in Cold Ecosystems 53:33–40

    Google Scholar 

  • Kirschbaum MUF (1995) The temperature dependence of soil organic matter decomposition, and the effect of global warming on soil organic C storage. Soil Biol Biochem 27:753–760

    Article  CAS  Google Scholar 

  • Ludwig W, Amiotte-Suchet P, Probst JL (1996a) River discharges of carbon to the world’s oceans: determining local inputs of alkalinity and of dissolved and particulate organic carbon. CR Acad Sci Paris 323:1007–1014

    CAS  Google Scholar 

  • Ludwig W, Probst JL, Kempe S (1996b) Predicting the oceanic input of organic carbon by continental erosion. Global Biogeochem Cy 10:23–41

    Article  CAS  Google Scholar 

  • Marschner B, Bredow A (2002) Temperature effects on release and ecologically relevant properties of dissolved organic carbon in sterilised and biologically active soil samples. Soil Biol Biochem 34:459–466

    Article  CAS  Google Scholar 

  • Marschner B, Kalbitz K (2003) Controls of bioavailability and biodegradability of dissolved organic matter in soils. Geoderma 113:211–235

    Article  CAS  Google Scholar 

  • Martin A, Mariotti A, Balesdent J, Lavelle P, Vuattoux R (1990) Estimate of organic matter turnover rate in a savanna soil by 13C natural abundance measurements. Soil Biol Biochem 72:517–523

    Article  Google Scholar 

  • Maurice PA, Leff LG (2002) Hydrogeochemical controls on the organic matter and bacterial ecology of a small freshwater wetland in the New Jersey Pine Barrens. Water Res 36:2561–2570

    Article  CAS  PubMed  Google Scholar 

  • Meybeck M (1993) C, N, P and S in rivers; from sources to global imputs. In: Wallast R, Mackenzie FT, Chou L (eds) Interactions of C, N, P and S biogeochemical cycles and global changes. Springer Verlag, Berlin, pp 163–193

    Google Scholar 

  • Michalzik B, Kalbitz K, Park J-H, Solinger S, Matzner E (2001) Fluxes and concentrations of dissolved organic carbon and nitrogen—a synthesis for temperate forests. Biogeochemistry 52:173–205

    Article  Google Scholar 

  • Moore TR (1989a) Dynamics of dissolved organic carbon in forested and disturbed catchments, Westland, New Zealand, 1. Maimai. Water Resour Res 25:1321–1330

    Article  CAS  Google Scholar 

  • Moore TR (1989b) Dynamics of dissolved organic carbon in forested and disturbed catchments, Westland, New Zealand, 2. Larry river. Water Resour Res 25:1331–1339

    Article  CAS  Google Scholar 

  • Moukoumi J, Munier-Lamy C, Berthelin J, Ranger J (2006) Effect of tree species substitution on organic matter biodegradability and mineral nutrient availability in a temperate topsoil. Ann For Sci 63:763–771

    Article  CAS  Google Scholar 

  • Neal C, Robson AJ, Neal M, Reynolds B (2005) Dissolved organic carbon for upland acidic and acid sensitive catchments in mid-Wales. Nutrient mobility within river basins: a European perspective. J Hydrol 304:203–220

    Article  CAS  Google Scholar 

  • Neff JC, Asner GP (2001) Dissolved organic carbon in terrestrial ecosystems: synthesis and a model. Ecosystems 4:29–48

    Article  CAS  Google Scholar 

  • Nelson PN, Baldock JA, Oades JM (1993) Concentration and composition of dissolved organic carbon in streams in relation to catchment soil properties. Biogeochemistry 19:27–50

    Article  Google Scholar 

  • Piccolo A (1994) Interactions between organic pollutants and humic substances in the environment. In: Senesi N, Miano TM (eds) Humic substances in the global environment and implications on human health. Elsevier, Amsterdam, pp 961–979

    Google Scholar 

  • Priha O, Smolander A (1999) Nitrogen transformations in soil under Pinus sylvestris, Picea abies and Betula pendula at two forest sites. Soil Biol Biochem 31:965–977

    Article  CAS  Google Scholar 

  • Priha O, Grayston SJ, Hiukka R, Pennanen T, Smolander A (2001) Microbial community structure and characteristics of the organic matter in soils under Pinus sylvestris, Picea abies and Betula pendula at two forest sites. Biol Fertil Soils 33:17–24

    Article  CAS  Google Scholar 

  • Quideau SA, Chadwick OA, Benesi A, Graham RC, Anderson MA (2001) A direct link between forest vegetation type and soil organic matter composition. Geoderma 104:41–60

    Article  CAS  Google Scholar 

  • Ranger J (2004) Effet des substitutions d’essence sur le fonctionnement organo-minéral de l'écosystème forestier, sur les communautés microbiennes et sur la diversité des communautés fongiques mycorhiziennes et saprophytes (cas du dispositif expérimental de Breuil - Morvan). Rapport Final. pp 202. Institut de la Recherche Agronomique, Biogéochimie des Ecosystèmes Forestriers, Nancy

  • Ranger J, Bienaimé SPB, Gelhaye D, Gelhaye L, Pollier B (2004) Base de données ‘Solutions’ du site-atelier de Breuil (Morvan). Unité Biogéochimie des Ecosystèmes Forestiers. INRA Centre de Nancy, F54280 Champenoux

  • Reichstein M, Bednorz F, Broll G, Kätterer T (2000) Temperature dependence of carbon mineralisation: conclusions from a long-term incubation of subalpine soil samples. Soil Biol Biochem 32:947–958

    Article  CAS  Google Scholar 

  • Ross DJ, Tate KR, Scott NA, Feltham CW (1999) Land-use change: effects on soil carbon, nitrogen and phosphorus pools and fluxes in three adjacent ecosystems. Soil Biol Biochem 31:803–813

    Article  CAS  Google Scholar 

  • Sanderman J, Baldock JA, Amundson R (2008) Dissolved organic carbon chemistry and dynamics in contrasting forest and grassland soils. Biogeochemistry 89:181–198

    Google Scholar 

  • Smolander A, Kitunen V (2002) Soil microbial activities and characteristics of dissolved organic C and N in relation to tree species. Soil Biol Biochem 34:651–660

    Article  CAS  Google Scholar 

  • Tipping E, Marker AFH, Butterwick C, Collett GD, Cranwell PA, Ingram JKG, Leach DV, Lishman JP, Pinder AC, Rigg E, Simon BM (1997) Organic carbon in the Humber rivers. Sci Total Environ 194–195:345–355

    Google Scholar 

  • Vitousek PM, Hedin LO, Matson PA, Fownes JH, Neff JC (1998) Within-system element cycles, input-output budgets and nutrient limitation. In: PM G, ML P (eds) Successes, limitations and frontiers in ecosystem science. Springer, New York, pp 432–451

    Google Scholar 

  • Wang HQ, Hall CAS, Cornell JD, Hall MHP (2002) Spatial dependence and the relationship of soil organic carbon and soil moisture in the Luquillo Experimental Forest, Puerto Rico. Landscape Ecol 17:671–684

    Article  Google Scholar 

  • Worrall F, Burt T, Adamson J (2004) Can climate change explain increases in DOC flux from upland peat catchments? Sci Total Environ 326:95–112

    Article  CAS  PubMed  Google Scholar 

  • WRB (2006)—IUSS Working group. World reference base for soil resources 2006. 2nd edition. World Soil Resources Reports No. 103. FAO, Rome

  • Xu X, Inubushi K, Sakamoto K (2006) Effect of vegetations and temperature on microbial biomass carbon and metabolic quotients of temperate volcanic forest soils. Geoderma 136:310–319

    Article  CAS  Google Scholar 

  • Zhao M, Zhou J, Kalbitz K (2008) Carbon mineralization and properties of water-extractable organic carbon in soils of the south Loess Plateau in China. Eur J Soil Biol 44:158–165

    Article  CAS  Google Scholar 

  • Zsolnay Á (2003) Dissolved organic matter: artefacts, definitions, and functions. Geoderma 113:187–209

    Article  CAS  Google Scholar 

  • Zuo Y, Jones RD (1997) Photochemistry of natural dissolved organic matter in lake and wetland waters–production of carbon monoxide. Water Res 31:850–858

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the Regional Council of Burgundy and from the Seine-Normandie Water Agency. The authors are grateful to Marie-Jeanne Milloux for performing stable isotope analysis of carbon, to Florian Bizouard for his technical help and to Olivier Mathieu for discussions. P. Nelson’s involvement was funded by the Marine and Tropical Science Research Facility and the Department of Environment, Science and Training through the International Science Linkages programme, French-Australian Science and Technology Programme. The manuscript has been greatly improved thanks to the comments of an anonymous reviewer on the initial version.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anthony Gauthier.

Additional information

Responsible Editor: Klaus Butterbach-Bahl.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gauthier, A., Amiotte-Suchet, P., Nelson, P.N. et al. Dynamics of the water extractable organic carbon pool during mineralisation in soils from a Douglas fir plantation and an oak-beech forest—an incubation experiment. Plant Soil 330, 465–479 (2010). https://doi.org/10.1007/s11104-009-0220-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-009-0220-x

Keywords

Navigation