Skip to main content
Log in

Rhizosphere effects on ion concentrations near different root zones of Norway spruce (Picea abies (L.) Karst.) and root types of Douglas-fir (Pseudotsuga menziesii L.) seedlings

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Micro-suction cups were installed in split-root rhizotrons to investigate changes of ion concentrations pertaining to different root zones (Norway spruce) or various root types (Douglas-fir). Plant seedlings were grown in mineral soils fertilised with a mix of KMgCa or unfertilised. In Norway spruce, ions accumulated mostly in the rhizosphere near root tips in fertilised soil. Cations (Fe3+/Mn2+, Na+) and anions (Cl-, SO4 2-) were depleted in basal root areas in unfertilised soil. In Douglas-fir, ion accumulations (except K in unfertilised soil) occurred in rhizosphere of current-year suberized roots in both fertilised and unfertilised soils. Ion concentrations in rhizosphere of one-year-old suberized roots were highest compared to those of newly-grown or current-year roots in fertilised soil. These data demonstrate that soil solution chemistry clearly differs in rhizosphere of different segments of single roots and various root types. Ion accumulation in rhizosphere may be due to high mass flow transport of ions to root surfaces, and the accumulation of ions in rhizosphere was more distinct for root tips.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arocena JM, Göttlein A, Raidl S (2004) Spatial changes of soil solution and mineral composition in the rhizosphere of Norway-spruce seedlings colonized by Piloderman croceum. J Plant Nutr Soil Sci 167:479–486 doi:10.1002/jpln.200320344

    Article  CAS  Google Scholar 

  • Bakker MR, Dieffenbach A, Ranger J (1999) soil solution chemistry in the rhizosphere of roots of sessile oak (Quercus petraea) as influenced by lime. Plant Soil 209:109–216 doi:10.1023/A:1004511712471

    Article  Google Scholar 

  • Bakker MR, George E, Turpault M-P, Zhang JL, Zeller B (2004) Impact of Douglas-fir and Scots pine seedlings on plagioclase weathering under acidic conditions. Plant Soil 266:247–259 doi:10.1007/s11104-005-1153-7

    Article  CAS  Google Scholar 

  • Bidel LPR, Renault P, Pages L, Riviere LM (2001) An improved method to measure spatial variation in root respiration: application to the taproot of a young peach tree Prunus persica. Agronomie 21:179–192 doi:10.1051/agro:2001116

    Article  Google Scholar 

  • Braun M, Dieffenbach A, Matzner E (2001) Soil solution chemistry in the rhizosphere of beech (Fagus silatica L.) roots as influenced by ammonium supply. J Plant Nutr Soil Sci 164:271–277 doi:10.1002/1522-2624(200106)164:3<271::AID-JPLN271>3.0.CO;2-G

    Article  CAS  Google Scholar 

  • Claus A, George E (2005) Effect of stand age on fine root biomass and biomass distribution in three European forest chronosequences. Can J Res 35:1617–1625 doi:10.1139/x05-079

    Article  Google Scholar 

  • Clegg S, Gobran GR (1997) Rhizospheric P and K in forest soil manipulated with ammonium sulfate and water. Can J Soil Sci 77:525–533

    Google Scholar 

  • Courchesne F, Gobran GR (1997) Mineralogical variations of bulk and rhizosphere soils from a Norway spruce stand. Soil Sci Soc Am J 61:1245–1249

    CAS  Google Scholar 

  • Cronan CS, Grigal DF (1995) Use of calcium/aluminium rations as indicators of stress in forest ecosystems. J Environ Qual 24:209–226

    CAS  Google Scholar 

  • Dessureault-Rompré J, Nowack B, Schulin R, Luster J (2007) Spatial and temporal variation in organic acid anion exudation and nutrient anion uptake in the rhizosphere of Lupinus albus L. Plant Soil 301:123–134 doi:10.1007/s11104-007-9427-x

    Article  CAS  Google Scholar 

  • Dieffenbach A, Matzner E (2000) In situ soil solution chemistry in the rhizosphere of mature Norway spruce (Picea abies (L.) Karst.). Plant Soil 222:149–161 doi:10.1023/A:1004755404412

    Article  CAS  Google Scholar 

  • Dieffenbach A, Göttlein A, Matzner E (1997) In-situ soil solution chemistry in an acid soil as influenced by growing roots of Norway spruce (Picea abies (L.) Karst.). Plant Soil 192:56–61 doi:10.1023/A:1004283508101

    Article  Google Scholar 

  • Eldhuset TD, Swensen B, Wickstrom T, Wollebaek G (2007) Organic acids in root exudates from Picea abies seedlings influenced by mycorrhiza and aluminium. J Plant Nutr Soil Sci 170:645–648

    CAS  Google Scholar 

  • Escamilla JA, Comerford NB (1998) Measuring nutrient depletion by roots of mature trees in the field. Soil Sci Soc Am J 62:797–804

    Article  CAS  Google Scholar 

  • Falkengren-Grerup U, Quist ME, Tyler G (1995) Relative importance of exchangeable and soil solutions cation concentrations to the distribution of vascular plants. Environ Exp Bot 35:9–15 doi:10.1016/0098-8472(94)00039-8

    Article  CAS  Google Scholar 

  • Fenn LB, Gobran GR (1999) Willow tree productivity on fertilizer solutions containing various Ca/Al ratios. Nutr Cycl Agroecosyst 53:121–131 doi:10.1023/A:1009773311678

    Article  CAS  Google Scholar 

  • George E, Marschner H (1996) Nutrient and water uptake by roots of forest trees. J Plant Nutr Soil Sci 159:11–21

    CAS  Google Scholar 

  • George E, Seith B, Schaeffer C, Marschner H (1997) Responses of Picea, Pinus and Pseudotsuga roots to heterogeous nutrient distribution in soil. Tree Physiol 17:39–45

    PubMed  Google Scholar 

  • George E, Stober C, Seith B (1999) The use of different soil nitrogen sources by young Norway spruce plant. Trees (Berl) 13:199–205 doi:10.1007/s004680050233

    Article  Google Scholar 

  • Gijsman AJ (1990) Nitrogen nutrition of Douglas-fir (Pseudotsuga menziesii) on strongly acid sandy soil. II. Proton excretion and rhizosphere pH. Plant Soil 126:63–70 doi:10.1007/BF00041369

    Article  CAS  Google Scholar 

  • Gobran GR, Clegg S, Courchesne F (1998) Rhizosphere process influencing the biogeochemistry of forest ecosystems. Biogeochemistry 42:107–120 doi:10.1023/A:1005967203053

    Article  Google Scholar 

  • Göttlein A, Blasek R (1996) Analysis of small volumes of soil solution by capillary electrophoresis. Soil Sci 161:705–715 doi:10.1097/00010694-199610000-00007

    Article  Google Scholar 

  • Göttlein A, Matzner E (1997) Microscale heterogeneity of acidity related stress-parameters in the soil solution of a forest cambic podzol. Plant Soil 192:95–105 doi:10.1023/A:1004260006503

    Article  Google Scholar 

  • Göttlein A, Hell U, Blasek R (1996) A system for microscale tensiometry and lysimetry. Geoderma 69:147–156 doi:10.1016/0016-7061(95)00059-3

    Article  Google Scholar 

  • Göttlein A, Heim A, Matzner E (1999) Mobilization of aluminium in the rhizosphere soil solution of growing tree roots in an acidic soil. Plant Soil 211:41–49 doi:10.1023/A:1004332916188

    Article  Google Scholar 

  • Göttlein A, Lindenmair J, Kuhn AJ (2001) Experimental approaches for studying rhizosphere chemistry and nutrient uptake of tree roots by in-situ methods. In: Horst et al (eds) Plant Nutrition: Food security and sustainability of agro-ecosystems through basic and applied research, Kluwer Academic Publishers, Vol. 92, Dordrecht

  • Gregory PJ (2006) Roots, rhizosphere and soil: the route to a better understanding of soil science? Eur J Soil Sci 57:2–12 doi:10.1111/j.1365-2389.2005.00778.x

    Article  Google Scholar 

  • Gregory PJ, Hinsinger P (1999) New approaches to studying chemical and physical changes in the rhizosphere: an overview. Plant Soil 211:1–9 doi:10.1023/A:1004547401951

    Article  CAS  Google Scholar 

  • Häussling M, Leisen E, Marschner H, Römheld V (1985) An improved method for non-destructive measurements of the pH at the root-soil interface (rhizosphere). J Plant Physiol 117:371–375

    Google Scholar 

  • Häussling M, Jorns CA, Lehmbecker G, Hecht-Buchholz C, Marschner H (1988) Ion and water uptake in relation to root development in Norway spruce (Picea abies (L.) Karst.). J Plant Physiol 133:486–491

    Google Scholar 

  • Hildebrand EE (1994) The heterogeneous distribution of mobile ions in the rhizosphere of acid forest soils: facts, causes and consequences. J Environ Sci Health A29:1973–1992

    Article  CAS  Google Scholar 

  • Hinsinger P (1998) How do plant roots acquire mineral nutrients? Chemical processes involved in the rhizosphere. Adv Agron 64:225–265 doi:10.1016/S0065-2113(08)60506-4

    Article  CAS  Google Scholar 

  • Hinsinger P, Gobran GR, Gregory PJ, Wenzel WW (2005) Rhizosphere geometry and heterogeneity arising from root-mediated physical and chemical processes. New Phytol 168:293–303 doi:10.1111/j.1469-8137.2005.01512.x

    Article  PubMed  CAS  Google Scholar 

  • Hinsinger P, Plassard C, Jaillard B (2006) Rhizosphere: A new frontier for soil biogeochemistry. J Geochem Explor 88:210–213 doi:10.1016/j.gexplo.2005.08.041

    Article  CAS  Google Scholar 

  • Hutchings MJ, De Kroon H (1994) Foraging in plants: the role of morphological plasticity in resource acquisition. S. 159-238. In. Advances in Ecological Research (Begon M, Fitter AH eds). Volume 25. 301 S. Academic Press, London

    Google Scholar 

  • Hüttl RF (1991) Die Nährelementversorgung geschädigter Wälder in Europa and Nordamerika. Freiburger Bodenkundliche Abhandlungen, Heft 28

  • Jones DL, Darrah PR (1994) Role of root derived organic acids in the mobilization of nutrients from the rhizosphere. Plant Soil 166:247–257 doi:10.1007/BF00008338

    Article  CAS  Google Scholar 

  • Koch AS, Matzner E (1993) Heterogeneity of soil and soil solution chemistry under Norway spruce (Picea abies Karst.) and European beech (Fagus sylvatica L.) as influenced by distance from the stem basis. Plant Soil 151:227–237 doi:10.1007/BF00016288

    Article  CAS  Google Scholar 

  • Lucash MS, Joslin JD, Yanai R (2005) Temporal variation in nutrient uptake capacity by intact roots of mature loblolly pine. Plant Soil 272:253–262 doi:10.1007/s11104-004-5296-8

    Article  CAS  Google Scholar 

  • Lucash MS, Eissenstat DM, Joslin JD, McFarlane KJ, Yanai RD (2007) Estimating nutrient uptake by mature tree roots under field conditions: challenges and opportunities. Trees - Structure and Function 21:593–603

    CAS  Google Scholar 

  • MacFall JS, Johnson GA, Kramer PJ (1990) Observation of a water-depletion region surrounding loblolly pine roots by magnetic resonance imaging. PNAS USA 87:1203–1207 doi:10.1073/pnas.87.3.1203

    Article  PubMed  CAS  Google Scholar 

  • Marschner H (1991) Mechanisms of adaptation of plants to acid soils. Plant Soil 134:1–20

    CAS  Google Scholar 

  • Marschner H (1995) Mineral Nutrition of Higher Plant (2nd edition), Academic press

  • Marth C (1995) Erfassung kleinräumiger pH - Heterogenität im Boden mit Hilfe von Antimon-Mikroelektrodenmatrices. Ber. des Forschungszentrums Waldökosysteme, Reihe A, Bd. 126, Göttingen, Germany

  • Peterson CA, Enstone DE, Taylor JH (1999) Pine root structure and its potential significance for root function. Plant Soil 217:205–213 doi:10.1023/A:1004668522795

    Article  Google Scholar 

  • Phillips R, Fahey TJ (2006) Tree species and mycorrhizal associations influence the magnitude of rhizosphere effects. Ecology 87:1302–1313 doi:10.1890/0012-9658(2006)87[1302:TSAMAI]2.0.CO;2

    Article  PubMed  Google Scholar 

  • Raynaud X, Jaillard B, Leadley PW (2008) Plants may alter competition by modifying nutrient bioavailability in rhizosphere: a modelling approach. Am Nat 171:44–58 doi:10.1086/523951

    Article  PubMed  Google Scholar 

  • Schüller H (1969) Die CAL-Methode, eine neue Methode zur Betimming des pflanzenverfugbaren Phosphates im Boden. Z Planzenernaehr Bodenkd 123:48–63 doi:10.1002/jpln.19691230106

    Article  Google Scholar 

  • Turpault MP, Uterano C, Boudot JP, Ranger J (2005) Influence of mature Douglas-fir roots on the soil phase of the rhizopshere and its solution chemistry. Plant Soil 275:327–336 doi:10.1007/s11104-005-2584-x

    Article  CAS  Google Scholar 

  • Turpault MP, Gobran GR, Bonnaud P (2007) Temporal variations of rhizosphere and bulk soil chemistry in a Douglas fir stand. Geoderma 137:490–496 doi:10.1016/j.geoderma.2006.10.005

    Article  CAS  Google Scholar 

  • Wang Z, Göttlein A, Bartonek G (2001) Effects of growing roots of Norway spruce (Picea abies (L.) Karst) and European beech (Fagus sylvatica L.) on rhizosphere soil solution chemistry. J Plant Nutr Soil Sci 164:35–41 doi:10.1002/1522-2624(200102)164:1<35::AID-JPLN35>3.0.CO;2-M

    Article  CAS  Google Scholar 

  • Zhang JL, George E (2002) Changes in the extracability of cations (Ca, Mg and K) in the rhizosphere of Norway spruce (Picea abies) roots. Plant Soil 243:209–217 doi:10.1023/A:1019915512072

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to the Deutsche Forschungsgemeinschaft (project Nr. GE 920/2-1 and MA 1089/5-1) for financial support. We are grateful to Birgit Brunner and Roland Blasek in BITÖK (Bayreuther Institut fuer Terrestrische Oekosystemforschung, Bayreuth, Germany) for analysing the soil solution samples. We also thank the anonymous reviewers whose helpful suggestions have greatly improved the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun-ling Zhang.

Additional information

Responsible Editor: Philippe Hinsinger.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, Jl., George, E. Rhizosphere effects on ion concentrations near different root zones of Norway spruce (Picea abies (L.) Karst.) and root types of Douglas-fir (Pseudotsuga menziesii L.) seedlings. Plant Soil 322, 209–218 (2009). https://doi.org/10.1007/s11104-009-9909-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-009-9909-0

Keywords

Navigation