Skip to main content

Advertisement

Log in

Digital mapping of soil organic matter stocks using Random Forest modeling in a semi-arid steppe ecosystem

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Spatial prediction of soil organic matter is a global challenge and of particular importance for regions with intensive land use and where availability of soil data is limited. This study evaluated a Digital Soil Mapping (DSM) approach to model the spatial distribution of stocks of soil organic carbon (SOC), total carbon (Ctot), total nitrogen (Ntot) and total sulphur (Stot) for a data-sparse, semi-arid catchment in Inner Mongolia, Northern China. Random Forest (RF) was used as a new modeling tool for soil properties and Classification and Regression Trees (CART) as an additional method for the analysis of variable importance. At 120 locations soil profiles to 1 m depth were analyzed for soil texture, SOC, Ctot, Ntot, Stot, bulk density (BD) and pH. On the basis of a digital elevation model, the catchment was divided into pixels of 90 m × 90 m and for each cell, predictor variables were determined: land use unit, Reference Soil Group (RSG), geological unit and 12 topography-related variables. Prediction maps showed that the highest amounts of SOC, Ctot, Ntot and Stot stocks are stored under marshland, steppes and mountain meadows. River-like structures of very high elemental stocks in valleys within the steppes are partly responsible for the high amounts of SOC for grasslands (81–84% of total catchment stocks). Analysis of variable importance showed that land use, RSG and geology are the most important variables influencing SOC storage. Prediction accuracy of the RF modeling and the generated maps was acceptable and explained variances of 42 to 62% and 66 to 75%, respectively. A decline of up to 70% in elemental stocks was calculated after conversion of steppe to arable land confirming the risk of rapid soil degradation if steppes are cultivated. Thus their suitability for agricultural use is limited.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Anderson JM (1991) The effects of climate change on decomposition processes in grassland and coniferous forests. Ecol Appl 1:326–347

    Article  Google Scholar 

  • Balesdent J, Chenu C, Balabane M (2000) Relationship of soil organic matter dynamics to physical protection and tillage. Soil Tillage Res 53:215–230

    Article  Google Scholar 

  • Barthold FK, Stallard RF, Elsenbeer H (2008) Soil nutrient-landscape relationships in a lowland tropical rainforest in Panama. For Ecol Manag 255:1135–1148

    Article  Google Scholar 

  • Batjes NH (1996) Total carbon and nitrogen in the soils of the world. Eur J Soil Sci 47:151–163

    Article  CAS  Google Scholar 

  • Breiman L (2001) Random forests. Mach Learn 45:5–32

    Article  Google Scholar 

  • Breiman L, Friedman JH, Olshen RA, Stone CJ (1984) Classification and regression trees. Chapman and Hall, New York

    Google Scholar 

  • Brus DJ, deGruijter JJ (1997) Random sampling or geostatistical modelling? Choosing between design-based and model-based sampling strategies for soil (with discussion). Geoderma 80:1–44

    Article  Google Scholar 

  • Chen SP, Bai YF, Zhang LX, Han XG (2005) Comparing physiological responses of two dominant grass species to nitrogen addition in Xilin River Basin of China. Environ Exp Bot 53:65–75

    Article  Google Scholar 

  • Chen J, Hori Y, Yamamura Y, Shiyomi M, Huang DM (2008) Spatial heterogeneity and diversity analysis of macrovegetation in the Xilingol region, Inner Mongolia, China, using the beta distribution. J Arid Environ 72:1110–1119

    Article  Google Scholar 

  • De’Ath G (2002) Multivariate regression trees: a new technique for modeling species-environment relationships. Ecology 83:1105–1117

    Google Scholar 

  • De’ath G, Fabricius KE (2000) Classification and regression trees: a powerful yet simple technique for ecological data analysis. Ecology 81:3178–3192

    Article  Google Scholar 

  • FAO (2006) Guidelines for soil description. Food and Agriculture Organization of the United Nations, Rome

    Google Scholar 

  • Gislason PO, Benediktsson JA, Sveinsson JR (2006) Random Forests for land cover classification. Pattern Recognit Lett 27:294–300

    Article  Google Scholar 

  • Grimm R, Behrens T, Marker M, Elsenbeer H (2008) Soil organic carbon concentrations and stocks on Barro Colorado Island—digital soil mapping using Random Forests analysis. Geoderma 146:102–113

    Article  CAS  Google Scholar 

  • Grunwald S (2009) Multi-criteria characterization of recent digital soil mapping and modeling approaches. Geoderma 152:195–207

    Article  Google Scholar 

  • Guo LB, Gifford RM (2002) Soil carbon stocks and land use change: a meta analysis. Glob Chang Biol 8:345–360

    Article  Google Scholar 

  • Hartge KH, Horn R (1989) Die physikalische Untersuchung von Böden. Enke Verlag, Stuttgart

    Google Scholar 

  • Henderson BL, Bui EN, Moran CJ, Simon DAP (2005) Australia-wide predictions of soil properties using decision trees. Geoderma 124:383–398

    Article  CAS  Google Scholar 

  • Hengl T, Heuvelink GBM, Stein A (2004) A generic framework for spatial prediction of soil variables based on regression-kriging. Geoderma 120:75–93

    Article  Google Scholar 

  • Hoffmann C, Funk R, Li Y, Sommer M (2008a) Effect of grazing on wind driven carbon and nitrogen ratios in the grasslands of Inner Mongolia. Catena 75:182–190

    Article  CAS  Google Scholar 

  • Hoffmann C, Funk R, Wieland R, Li Y, Sommer M (2008b) Effects of grazing and topography on dust flux and deposition in the Xilingele grassland, Inner Mongolia. J Arid Environ 72:792–807

    Article  Google Scholar 

  • IPCC (2000) IPCC Special Report Land use, Land-use change, and Forestry. Intergovernmental Panel on Climate Change (IPCC), Geneva

  • IUSS Working Group (2006) World reference base for soil resources 2006. World Soil Resources Reports No. 103, Food and Agriculture Organization (FAO), Rome

  • Jarvis A, Reuter HI, Nelson A, Guevara E (2008) Hole-filled seamless SRTM data V4.1, International Center for Tropical Agriculture (CIAT), http://srtm.csi.cgiar.org

  • Jenny H (1941) Factors of soil formation—a system of quantitative pedology. McGraw-Hill, New York

    Google Scholar 

  • Kawamura K, Akiyama T, Yokota H, Tsutsumi M, Yasuda T, Watanabe O, Wang SP (2005) Quantifying grazing intensities using geographic information systems and satellite remote sensing in the Xilingol steppe region, Inner Mongolia, China. Agric Ecosyst Environ 107:83–93

    Article  Google Scholar 

  • Kempen B, Brus DJ, Heuvelink GBM, Stoorvogel JJ (2009) Updating the 1:50, 000 Dutch soil map using legacy soil data: a multinomial logistic regression approach. Geoderma 151:311–326

    Article  Google Scholar 

  • Lal R (2004) Carbon sequestration in dryland ecosystems. Environ Manag 33:528–544

    Article  Google Scholar 

  • Lal R (2009) Challenges and opportunities in soil organic matter research. Eur J Soil Sci 60:158–169

    Article  CAS  Google Scholar 

  • Lawrence RL, Wood SD, Sheley RL (2006) Mapping invasive plants using hyperspectral imagery and Breiman Cutler classifications (RandomForest). Remote Sens Environ 100:356–362

    Article  Google Scholar 

  • Liaw A, Wiener M (2002) Classification and regression by randomForest. R News 2(3):18–22

    Google Scholar 

  • Liu DW, Wang ZM, Zhang B, Song KS, Li XY, Li JP, Li F, Duan HT (2006) Spatial distribution of soil organic carbon and analysis of related factors in croplands of the black soil region, Northeast China. Agric Ecosyst Environ 113:73–81

    Article  CAS  Google Scholar 

  • Liu HY, Yin Y, Tian YH, Ren J, Wang HY (2008) Climatic and anthropogenic controls of topsoil features in the semi-arid East Asian steppe. Geophys Res Lett 35, doi:10.1029/2007GL032980

  • McBratney AB, Odeh IOA, Bishop TFA, Dunbar MS, Shatar TM (2000) An overview of pedometric techniques for use in soil survey. Geoderma 97:293–327

    Article  Google Scholar 

  • McBratney AB, Santos MLM, Minasny B (2003) On digital soil mapping. Geoderma 117:3–52

    Article  Google Scholar 

  • McKenzie NJ, Ryan PJ (1999) Spatial prediction of soil properties using environmental correlation. Geoderma 89:67–94

    Article  Google Scholar 

  • Mora-Vallejo A, Claessens L, Stoorvogel J, Heuvelink GBM (2008) Small scale digital soil mapping in Southeastern Kenya. Catena 76:44–53

    Article  Google Scholar 

  • Mueller TG, Pierce FJ (2003) Soil carbon maps: enhancing spatial estimates with simple terrain attributes at multiple scales. Soil Sci Soc Am J 67:258–267

    Article  CAS  Google Scholar 

  • Myles AJ, Feudale RN, Liu Y, Woody NA, Brown SD (2004) An introduction to decision tree modeling. J Chemom 18:275–285

    Article  CAS  Google Scholar 

  • Ni J (2002) Carbon storage in grasslands of China. J Arid Environ 50:205–218

    Article  Google Scholar 

  • Peters J, Verhoest NEC, Samson R, Boeckx P, De Baets B (2008) Wetland vegetation distribution modelling for the identification of constraining environmental variables. Landsc Ecol 23:1049–1065

    Article  Google Scholar 

  • Prasad AM, Iverson LR, Liaw A (2006) Newer classification and regression tree techniques: bagging and random forests for ecological prediction. Ecosystems 9:181–199

    Article  Google Scholar 

  • RDevelopment Core Team (2008) An introduction to R. http://www.r-project.org/

  • Sanchez PA, Ahamed S, Carre F, Hartemink AE, Hempel J, Huising J, Lagacherie P, McBratney AB, McKenzie NJ, Mendonca-Santos MD, Minasny B, Montanarella L, Okoth P, Palm CA, Sachs JD, Shepherd KD, Vagen TG, Vanlauwe B, Walsh MG, Winowiecki LA, Zhang GL (2009) Digital soil map of the world. Science 325:680–681

    Article  CAS  PubMed  Google Scholar 

  • Scull P, Franklin J, Chadwick OA, McArthur D (2003) Predictive soil mapping: a review. Prog Phys Geogr 27:171–197

    Article  Google Scholar 

  • Song GH, Li LQ, Pan GX, Zhang Q (2005) Topsoil organic carbon storage of China and its loss by cultivation. Biogeochemistry 74:47–62

    Article  CAS  Google Scholar 

  • Sorensen R, Zinko U, Seibert J (2006) On the calculation of the topographic wetness index: evaluation of different methods based on field observations. Hydrol Earth Syst Sci 10:101–112

    Article  Google Scholar 

  • Spörlein P, Dilling J, Joneck M (2004) Pilot study to test the equivalence or comparability of soil-particle-size analysis according to E DIN ISO 11277: 06.94 (pipette method) and by the use of the sedigraph. Journal of Plant Nutrition and Soil Science-Zeitschrift für Pflanzenernährung und Bodenkunde. J Plant Nutr Soil Sc 167:649–656

    Article  Google Scholar 

  • Steffens M (2009) Soils of a semiarid shortgrass steppe in Inner Mongolia: organic matter composition and distribution as affected by sheep grazing. Dissertation, Lehrstuhl für Bodenkunde, Technische Universität München

  • Steffens M, Kölbl A, Totsche KU, Kögel-Knabner I (2008) Grazing effects on soil chemical and physical properties in a semiarid steppe of Inner Mongolia (PR China). Geoderma 143:63–72

    Article  CAS  Google Scholar 

  • Steffens M, Kölbl A, Giese KM, Hoffmann C, Totsche KU, Breuer L, Kögel-Knabner I (2009a) Spatial variability of topsoil and vegetation in a grazed steppe ecosystem in Inner Mongolia (PR China). Journal of Plant Nutrition and Soil Science-Zeitschrift für Pflanzenernährung und Bodenkunde. J Plant Nutr Soil Sc 172:78–90

    Article  CAS  Google Scholar 

  • Steffens M, Kölbl A, Kögel-Knabner I (2009b) Alteration of soil organic matter pools and aggregation in semi-arid steppe topsoils as driven by organic matter input. Eur J Soil Sci 60:198–212

    Article  CAS  Google Scholar 

  • Stoorvogel JJ, Kempen B, Heuvelink GBM, de Bruin S (2009) Implementation and evaluation of existing knowledge for digital soil mapping in Senegal. Geoderma 149:161–170

    Article  Google Scholar 

  • Thompson JA, Bell JC, Butler CA (2001) Digital elevation model resolution: effects on terrain attribute calculation and quantitative soil-landscape modeling. Geoderma 100:67–89

    Article  Google Scholar 

  • Tong C, Wu J, Yong S, Yang J, Yong W (2004) A landscape-scale assessment of steppe degradation in the Xilin River Basin, Inner Mongolia, China. J Arid Environ 59:133–149

    Article  Google Scholar 

  • Vasques GM, Grunwald S, Sickman JO (2008) Comparison of multivariate methods for inferential modeling of soil carbon using visible/near-infrared spectra. Geoderma 146:14–25

    Article  CAS  Google Scholar 

  • Wang SQ, Zhou CH, Liu JY, Tian HQ, Li KA, Yang XM (2002) Carbon storage in northeast China as estimated from vegetation and soil inventories. Environ Pollut 116:S157–S165

    Article  CAS  PubMed  Google Scholar 

  • Wei JB, Xiao DN, Zeng H, Fu YK (2008) Spatial variability of soil properties in relation to land use and topography in a typical small watershed of the black soil region, northeastern China. Environ Geol 53:1663–1672

    Article  CAS  Google Scholar 

  • Wiesmeier M, Steffens M, Kölbl A, Kögel-Knabner I (2009) Degradation and small-scale spatial homogenization of topsoils in intensively grazed steppes of Northern China. Soil Tillage Res 104:299–310

    Article  Google Scholar 

  • Wilson J, Gallant J (2000) Terrain analysis: principles and applications. Wiley, New York

    Google Scholar 

  • Wu HB, Guo ZT, Peng CH (2003) Distribution and storage of soil organic carbon in China. Global Biogeochem Cycles 17:1048. doi:10.1029/2001GB001844

  • Wu JS, Liu HD, Duan XY, Ding Y, Wu HT, Bai YF, Sun X (2009) Prediction of DNA-binding residues in proteins from amino acid sequences using a random forest model with a hybrid feature. Bioinformatics 25:30–35

    Article  CAS  PubMed  Google Scholar 

  • Xie ZB, Zhu JG, Liu G, Cadisch G, Hasegawa T, Chen CM, Sun HF, Tang HY, Zeng Q (2007) Soil organic carbon stocks in China and changes from 1980s to 2000s. Glob Chang Biol 13:1989–2007

    Article  Google Scholar 

  • Yu DS, Shi XZ, Wang H, Sun WX, Chen JM, Liu QH, Zhao YC (2007) Regional patterns of soil organic carbon stocks in China. J Environ Manag 85:680–689

    Article  CAS  Google Scholar 

  • Zhou ZY, Sun OJ, Huang JH, Li LH, Liu P, Han XG (2007) Soil carbon and nitrogen stores and storage potential as affected by land-use in an agro-pastoral ecotone of northern China. Biogeochemistry 82:127–138

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Thomas Lendvaczky, Michael Schnabel, Sarah Schroeder, Hermann Autengruber, Peter Schad, Markus Steffens, Angelika Kölbl, Elfriede Schörk and Livia Wissing for their efforts in field sampling, laboratory work, helpful suggestions and for providing their knowledge. Qimei Lin and Yuandi Zhu are acknowledged for logistic handling. We also thank Xingguo Han, Yongfei Bai and the Institute of Botany (Chinese Academy of Sciences) for the opportunity to work at IMGERS. We are grateful to the Deutsche Forschungsgemeinschaft (DFG) for funding the MAGIM project (KO 1035/26-3, Forschergruppe 536 MAGIM—Matter fluxes in grasslands of Inner Mongolia as influenced by stocking rate).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Wiesmeier.

Additional information

Responsible Editor: Elizabeth (Liz) A. Stockdale.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wiesmeier, M., Barthold, F., Blank, B. et al. Digital mapping of soil organic matter stocks using Random Forest modeling in a semi-arid steppe ecosystem. Plant Soil 340, 7–24 (2011). https://doi.org/10.1007/s11104-010-0425-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-010-0425-z

Keywords

Navigation