Skip to main content

Advertisement

Log in

Nitrogen supply influences plant growth and transcriptional responses induced by Enterobacter radicincitans in Solanum lycopersicum

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Aim

The use of plant growth-promoting bacteria (PGPB) to reduce requirements for mineral nitrogen fertilization in sustainable agriculture is an important issue. We studied how reduced nitrogen fertilization affects the growth-promoting capacity of Enterobacter radicincitans, the bacteria’s root colonization behavior, and the regulation of nitrogen, phosphate and hormone marker genes in tomato (Solanum lycopersicum).

Method

Tomato seeds inoculated with 107 cfu mL−1 E. radicincitans or 0.05 M NaCl, were grown under two distinct nitrogen fertilization regimes.

Results

When treated with E. radicincitans, plant root or shoot dry weight increased by 180 %, or 150 % in high nitrogen (HN) conditions, but increased only by 120 %, or 140 % in low nitrogen (LN) conditions. HN plants were colonized by a higher number of total bacteria, including E. radicincitans, than LN plants. We found that E. radicincitans-treated plants expressed higher levels of a pathogen defense-related marker gene in LN conditions than in HN conditions. Transcription of the oxylipin biosynthesis marker genes was suppressed in E. radicincitans-treated plants under both fertilization regimes.

Conclusion

Our findings indicate that drastic reduction in nitrogen fertilization results in modulating plant hormone signaling, thus inhibiting the optimal effect of E. radicincitans on tomato.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Akram A, Ongena M, Duby F, Dommes J, Thonart P (2008) Systemic resistance and lipoxygenase-related defence response induced in tomato by Pseudomonas putida strain BTPI. BMC Plant Biol 8:113

    Article  PubMed  Google Scholar 

  • Barbieri P, Galli E (1993) Effect on wheat root development of inoculation with an Azospirillum brasilense mutant with altered indole-3-acetic acid production. Res Microbiol 144(1):69–75

    Article  PubMed  CAS  Google Scholar 

  • Barbieri P, Zanelli T, Galli E, Zanetti G (1986) Wheat inoculation with Azospirillum brasilense sp6 and some mutants altered in nitrogen-fixation and indole-3-acetic acid production. FEMS Microbiol Lett 36(1):87–90

    Article  CAS  Google Scholar 

  • Bloemberg GV, Lugtenberg BJJ (2001) Molecular basis of plant growth-promotion and biocontrol by rhizobacteria. Curr Opin Plant Biol 4(4):343–350

    Article  PubMed  CAS  Google Scholar 

  • Bonfante P, Genre A (2008) Plants and arbuscular mycorrhizal fungi: an evolutionary-developmental perspective. Trends Plant Sci 13(9):492–498

    Article  PubMed  CAS  Google Scholar 

  • Bordiec S, Paquis S, Lacroix H, Dhondt S, Barka EA, Kauffmann S, Jeandet P, Mazeyrat-Gourbeyre F, Clement C, Baillieul F, Dorey S (2011) Comparative analysis of defence responses induced by the endophytic plant growth-promoting rhizobacterium Burkholderia phytofirmans strain PsJN and the non-host bacterium Pseudomonas syringae pv. pisi in grapevine cell suspensions. J Exp Bot 62(2):595–603

    Article  PubMed  CAS  Google Scholar 

  • Bucher M (2007) Functional biology of plant phosphate uptake at root and mycorrhiza interfaces. New Phytol 173(1):11–26

    Article  PubMed  CAS  Google Scholar 

  • Dobbelaere S, Croonenborghs A, Thys A, Ptacek D, Vanderleyden J, Dutto P, Labandera-Gonzalez C, Caballero-Mellado J, Aguirre JF, Kapulnik Y, Brener S, Burdman S, Kadouri D, Sarig S, Okon Y (2001) Responses of agronomically important crops to inoculation with Azospirillum. Aust J Plant Physiol 28(9):871–879

    Google Scholar 

  • Dobbelaere S, Vanderleyden J, Okon Y (2003) Plant growth-promoting effects of diazotrophs in the rhizosphere. Crit Rev Plant Sci 22(2):107–149

    Article  CAS  Google Scholar 

  • Esquivel-Cote R, Maria Ramirez-Gama R, Tsuzuki-Reyes G, Orozco-Segovia A, Huante P (2010) Azospirillum lipoferum strain AZm5 containing 1-aminocyclopropane-1-carboxylic acid deaminase improves early growth of tomato seedlings under nitrogen deficiency. Plant Soil 337(1–2):65–75

    Article  CAS  Google Scholar 

  • Fallik E, Okon Y (1996) The response of maize (Zea mays) to Azospirillum inoculation in various types of soils in the field. World J Microbiol Biotechnol 12(5):511–515

    Article  Google Scholar 

  • Ferguson BJ, Indrasumunar A, Hayashi S, Lin M-H, Lin Y-H, Reid DE, Gresshoff PM (2010) Molecular analysis of legume nodule development and autoregulation. J Integr Plant Biol 52(1):61–76

    Article  PubMed  CAS  Google Scholar 

  • Glick BR (2005) Modulation of plant ethylene levels by the bacterial enzyme ACC deaminase. Fems Microbiol Lett 251(1):1–7

    Article  PubMed  CAS  Google Scholar 

  • Harrison MJ (2005) Signaling in the arbuscular mycorrhizal symbiosis. Annu Rev Microbiol 59:19–42

    Article  PubMed  CAS  Google Scholar 

  • Hayat R, Ali S, Amara U, Khalid R, Ahmed I (2010) Soil beneficial bacteria and their role in plant growth-promotion: a review. Ann Microbiol 60(4):579–598

    Article  Google Scholar 

  • Höflich G, Galante F, Liste H-H, Weise I, Ruppel S, Scholz-Seidel C (1992) Phytoeffective combination effects of symbiotic and associative microorganisms on legumes. Symbiosis 14:427–438

    Google Scholar 

  • Kloepper JW, Lifshitz R, Zablotowicz RM (1989) Free-living bacterial inocula for enhancing crop productivity. Trends Biotechnol 7(2):39–44

    Article  Google Scholar 

  • Krouk G, Ruffel S, Gutierrez RA, Gojon A, Crawford NM, Coruzzil GM, Lacombe B (2011) A framework integrating plant growth with hormones and nutrients. Trends Plant Sci 16(4):178–182

    Article  PubMed  CAS  Google Scholar 

  • Kunkel BN, Brooks DM (2002) Cross talk between signaling pathways in pathogen defense. Curr Opin Plant Biol 5(4):325–331

    Article  PubMed  CAS  Google Scholar 

  • Lane D (1991) 16S/23S rRNA sequencing. In: Stackebrandt E, Goodfellow M (eds) Nucleic acid techniques in bacterial systematics. Wiley, Chichester, pp 115–175

    Google Scholar 

  • Lopez-Raez JA, Charnikhova T, Fernandez I, Bouwmeester H, Pozo MJ (2011) Arbuscular mycorrhizal symbiosis decreases strigolactone production in tomato. J Plant Physiol 168(3):294–297

    Article  PubMed  CAS  Google Scholar 

  • Millet YA, Danna CH, Clay NK, Songnuan W, Simon MD, Werck-Reichhart D, Ausubel FM (2010) Innate immune responses activated in Arabidopsis roots by microbe-associated molecular patterns. Plant Cell 22(3):973–990

    Article  PubMed  CAS  Google Scholar 

  • Miransari M (2011a) Arbuscular mycorrhizal fungi and nitrogen uptake. Arch Microbiol 193(2):77–81

    Article  PubMed  CAS  Google Scholar 

  • Miransari M (2011b) Soil microbes and plant fertilization. Appl Microbiol Biotechnol 92(5):875–885

    Article  PubMed  CAS  Google Scholar 

  • Mortier V, Holsters M, Goormachtig S (2012) Never too many? How legumes control nodule numbers. Plant Cell Environ 35(2):245–258

    Article  PubMed  CAS  Google Scholar 

  • Neumann E, George E (2004) Colonisation with the arbuscular mycorrhizal fungus Glomus mosseae (Nicol. & Gerd.) enhanced phosphorus uptake from dry soil in Sorghum bicolor (L.). Plant Soil 261(1–2):245–255

    Article  CAS  Google Scholar 

  • Oldroyd GED, Harrison MJ, Paszkowski U (2009) Reprogramming plant cells for endosymbiosis. Science 324(5928):753–754

    Article  PubMed  CAS  Google Scholar 

  • Ortíz-Castro R, Contreras-Cornejo HA, Macías-Rodríguez L, López-Bucio J (2009) The role of microbial signals in plant growth and development. Plant Signal Behav 4(8):701–712

    Article  PubMed  Google Scholar 

  • Parniske M (2008) Arbuscular mycorrhiza: the mother of plant root endosymbioses. Nat Rev Microbiol 6(10):763–775

    Article  PubMed  CAS  Google Scholar 

  • Patten CL, Glick BR (2002) Role of Pseudomonas putida indoleacetic acid in development of the host plant root system. Appl Environ Microbiol 68(8):3795–3801

    Article  PubMed  CAS  Google Scholar 

  • Penninckx I, Eggermont K, Terras F, Thomma B, Samblanx G, Buchala A, Metraux JP, Manners JM, Broekaert WF (1996) Pathogen-induced systemic activation of a plant defensin gene in Arabidopsis follows a salicylic acid-independent pathway. Plant Cell 8(12):2309–2323

    PubMed  CAS  Google Scholar 

  • Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT–PCR. Nucleic Acids Res 29(9):e45

    Article  PubMed  CAS  Google Scholar 

  • Popp C, Ott T (2011) Regulation of signal transduction and bacterial infection during root nodule symbiosis. Curr Opin Plant Biol 14(4):458–467

    Article  PubMed  CAS  Google Scholar 

  • Rahman A, Amakawa T, Goto N, Tsurumi S (2001) Auxin is a positive regulator for ethylene-mediated response in the growth of Arabidopsis roots. Plant Cell Physiol 42(3):301–307

    Article  PubMed  CAS  Google Scholar 

  • Reinhold-Hurek B, Hurek T (2011) Living inside plants: bacterial endophytes. Curr Opin Plant Biol 14(4):435–443

    Article  PubMed  Google Scholar 

  • Remans R, Beebe S, Blair M, Manrique G, Tovar E, Rao I, Croonenborghs A, Torres-Gutierrez R, El-Howeity M, Michiels J, Vanderleyden J (2008) Physiological and genetic analysis of root responsiveness to auxin-producing plant growth-promoting bacteria in common bean (Phaseolus vulgaris L.). Plant Soil 302(1):149–161

    Article  CAS  Google Scholar 

  • Remus R, Ruppel S, Jacob HJ, Hecht-Buchholz C, Merbach W (2000) Colonization behaviour of two enterobacterial strains on cereals. Biol Fertil Soils 30(5–6):550–557

    Article  Google Scholar 

  • Rosendahl S (2008) Communities, populations and individuals of arbuscular mycorrhizal fungi. New Phytol 178(2):253–266

    Article  PubMed  Google Scholar 

  • Rubio V, Bustos R, Irigoyen M, Cardona-López X, Rojas-Triana M, Paz-Ares J (2009) Plant hormones and nutrient signaling. Plant Mol Biol 69(4):361–373

    Article  PubMed  CAS  Google Scholar 

  • Ruppel S (1989) Isolation and characterization of dinitrogen-fixing bacteria from the rhizosphere of Triticum aestivum and Ammophila arenaria. In: Vlastimil V, Františk K (eds) Developments in Soil Science, vol 18. Elsevier, Liblice, pp 253–262

    Google Scholar 

  • Ruppel S, Wernitz B (2004) Quantifizierung und Monitoring von Pantoea agglomerans an Kohlrabi Wurzeln und Blättern mittels Real-time PCR. In: Merbach W, Egle K, Augustin J (eds) Wurzelinduzierte Bodenvorgänge B.G. Teubner, Stuttgart, Leipzig, Wiesbaden, pp 56–61

    Google Scholar 

  • Ruppel S, Hecht-Buchholz C, Remus R, Ortmann U, Schmelzer R (1992) Settlement of the diazotrophic, phytoeffective bacterial strain Pantoea agglomerans on and within winter-wheat - an investigation using ELISA and transmission electron-microscopy. Plant Soil 145(2):261–273

    Article  Google Scholar 

  • Ruppel S, Rühlmann J, Merbach W (2006) Quantification and localization of bacteria in plant tissues using quantitative real-time PCR and online emission fingerprinting. Plant Soil 286(1–2):21–35

    Article  CAS  Google Scholar 

  • Ruzicka K, Ljung K, Vanneste S, Podhorská R, Beeckman T, Friml J, Benková E (2007) Ethylene regulates root growth through effects on auxin biosynthesis and transport-dependent auxin distribution. Plant Cell 19(7):2197–2212

    Article  PubMed  CAS  Google Scholar 

  • Ruzicka D, Barrios-Masias F, Hausmann N, Jackson L, Schachtman D (2010) Tomato root transcriptome response to a nitrogen-enriched soil patch. BMC Plant Biol 10(1):75

    Article  PubMed  Google Scholar 

  • Scholz-Seidel C, Ruppel S (1992) Nitrogenase activities and phytohormone activities of Pantoea agglomerans in culture and their reflection in combination in wheat plants. Zentralbl Mikrobiol 147(5):319–328

    CAS  Google Scholar 

  • Schreiner M, Krumbein A, Ruppel S (2009) Interaction between plants and bacteria: glucosinolates and phyllospheric colonization of cruciferous vegetables by Enterobacter radicincitans DSM 16656. J Mol Microbiol Biotechnol 17(3):124–135

    Article  PubMed  CAS  Google Scholar 

  • Shah J (2003) The salicylic acid loop in plant defense. Curr Opin Plant Biol 6(4):365–371

    Article  PubMed  CAS  Google Scholar 

  • Silva HSA, Romeiro RD, Macagnan D, Halfeld-Vieira BD, Pereira MCB, Mounteer A (2004a) Rhizobacterial induction of systemic resistance in tomato plants: non-specific protection and increase in enzyme activities. Biol Control 29(2):288–295

    Article  CAS  Google Scholar 

  • Silva HSA, Romeiro RS, Carrer R, Pereira JLA, Mizubuti ESG, Mounteer A (2004b) Induction of systemic resistance by Bacillus cereus against tomato foliar diseases under field conditions. J Plant Pathol 152(6):371–375

    Google Scholar 

  • Spaepen S, Dobbelaere S, Croonenborghs A, Vanderleyden J (2008) Effects of Azospirillum brasilense indole-3-acetic acid production on inoculated wheat plants. Plant Soil 312(1–2):15–23

    Article  CAS  Google Scholar 

  • Stepanova AN, Hoyt JM, Hamilton AA, Alonso JM (2005) A link between ethylene and auxin uncovered by the characterization of two root-specific ethylene-insensitive mutants in Arabidopsis. Plant Cell 17(8):2230–2242

    Article  PubMed  CAS  Google Scholar 

  • van Loon LC (2007) Plant responses to plant growth-promoting rhizobacteria. Eur J Plant Pathol 119(3):243–254

    Article  Google Scholar 

  • Verhage A, van Wees SCM, Pieterse CMJ (2010) Plant immunity: it’s the hormones talking, but what do they say? Plant Physiol 154(2):536–540

    Article  PubMed  CAS  Google Scholar 

  • Xie H, Pasternak JJ, Glick BR (1996) Isolation and characterization of mutants of the plant growth-promoting rhizobacterium Pseudomonas putida CR12-2 that overproduce indole-acetic acid. Curr Microbiol 32(2):67–71

    Article  CAS  Google Scholar 

  • Yang J, Kloepper JW, Ryu C-M (2009) Rhizosphere bacteria help plants tolerate abiotic stress. Trends Plant Sci 14(1):1–4

    Article  PubMed  CAS  Google Scholar 

  • Zhang H, Rong H, Pilbeam D (2007) Signalling mechanisms underlying the morphological responses of the root system to nitrogen in Arabidopsis thaliana. J Exp Bot 58(9):2329–2338

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank B. Wernitz and J. Gräwert for technical assistance and the Leibniz Institute for Vegetable and Ornamental Crops, Großbeeren eV. for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Beatrice Berger.

Additional information

Responsible Editor: Jesús Mercado-Blanco.

Electronic supplementary materials

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 11 kb)

ESM 2

(DOCX 12 kb)

ESM 3

(DOCX 15 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Berger, B., Brock, A.K. & Ruppel, S. Nitrogen supply influences plant growth and transcriptional responses induced by Enterobacter radicincitans in Solanum lycopersicum . Plant Soil 370, 641–652 (2013). https://doi.org/10.1007/s11104-013-1633-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-013-1633-0

Keywords

Navigation