Skip to main content
Log in

Modelling the impact of heterogeneous rootzone water distribution on the regulation of transpiration by hormone transport and/or hydraulic pressures

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Aims

A simulation model to demonstrate that soil water potential can regulate transpiration, by influencing leaf water potential and/or inducing root production of chemical signals that are transported to the leaves.

Methods

Signalling impacts on the relationship between soil water potential and transpiration were simulated by coupling a 3D model for water flow in soil, into and through roots (Javaux et al. 2008) with a model for xylem transport of chemicals (produced as a function of local root water potential). Stomatal conductance was regulated by simulated leaf water potential (H) and/or foliar chemical signal concentrations (C; H + C). Split-root experiments were simulated by varying transpiration demands and irrigation placement.

Results

While regulation of stomatal conductance by chemical transport was unstable and oscillatory, simulated transpiration over time and root water uptake from the two soil compartments were similar for both H and H + C regulation. Increased stomatal sensitivity more strongly decreased transpiration, and decreased threshold root water potential (below which a chemical signal is produced) delayed transpiration reduction.

Conclusions

Although simulations with H + C regulation qualitatively reproduced transpiration of plants exposed to partial rootzone drying (PRD), long-term effects seemed negligible. Moreover, most transpiration responses to PRD could be explained by hydraulic signalling alone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Barigah TS, Charrier O, Douris M, Bonhomme M, Herbette S, Améglio T, Fichot R, Brignolas F, Cochard H (2013) Water stress-induced xylem hydraulic failure is a causal factor of tree mortality in beech and poplar. Ann Bot 112:1431–1437. doi:10.1093/aob/mct204

    Article  PubMed  Google Scholar 

  • Bravdo BA (2005) Physiological mechanisms involved in the production of non-hydraulic root signals by partial rootzone drying - A review. In: LE Williams (ed) Proceedings of the Seventh International Symposium on Grapevine Physiology and Biotechnology. International Society Horticultural Science, Leuven 1

  • Brodribb TJ, McAdam SAM (2011) Passive origins of stomatal control in vascular plants. Science 331:582–585. doi:10.1126/science.1197985

    Article  PubMed  CAS  Google Scholar 

  • Buckley TN (2005) The control of stomata by water balance. New Phytol 168:275–291. doi:10.1111/j.1469-8137.2005.01543.x

    Article  PubMed  CAS  Google Scholar 

  • Carsel RF, Parrish RS (1988) Developing joint probability-distributions of soil-water retention characteristics. Water Resour Res 24:755–769. doi:10.1029/WR024i005p00755

    Article  Google Scholar 

  • Christmann A, Weiler EW, Steudle E, Grill E (2007) A hydraulic signal in root-to-shoot signalling of water shortage. Plant J 52:167–174. doi:10.1111/j.1365-313X.2007.03234.x

    Article  PubMed  CAS  Google Scholar 

  • Christmann A, Grill E, Huang J (2013) Hydraulic signals in long-distance signaling. Curr Opin Plant Biol 16:293–300. doi:10.1016/j.pbi.2013.02.011

    Article  PubMed  CAS  Google Scholar 

  • Clausnitzer V, Hopmans JW (1994) Simultaneous modeling of transient three-dimensional root growth and soil water flow. Plant Soil 164:299–314

    Article  CAS  Google Scholar 

  • Couvreur V, Vanderborght J, Javaux M (2012) A simple three-dimensional macroscopic root water uptake model based on the hydraulic architecture approach. Hydrol Earth Syst Sci 16:2957–2971. doi:10.5194/hess-16-2957-2012

    Article  Google Scholar 

  • Damour G, Simonneau T, Cochard H, Urban L (2010) An overview of models of stomatal conductance at the leaf level. Plant Cell Environ 33:1419–1438. doi:10.1111/j.1365-3040.2010.02181.x

    PubMed  Google Scholar 

  • Davies WJ, Zhang JH (1991) Root signals and the regulation of growth and development of plants in drying soil. Annu Rev Plant Physiol Plant Mol Biol 42:55–76. doi:10.1146/annurev.arplant.42.1.55

    Article  CAS  Google Scholar 

  • Dodd IC (2009) Rhizosphere manipulations to maximize ‘crop per drop’ during deficit irrigation. J Exp Bot 60:2454–2459. doi:10.1093/jxb/erp192

    Article  PubMed  CAS  Google Scholar 

  • Dodd IC, Theobald JC, Bacon MA, Davies WJ (2006) Alternation of wet and dry sides during partial rootzone drying irrigation alters root-to-shoot signalling of abscisic acid. Funct Plant Biol 33:1081–1089. doi:10.1071/fp06203

    Article  CAS  Google Scholar 

  • Dodd IC, Egea G, Davies WJ (2008a) Abscisic acid signalling when soil moisture is heterogeneous: decreased photoperiod sap flow from drying roots limits abscisic acid export to the shoots. Plant Cell Environ 31:1263–1274. doi:10.1111/j.1365-3040.2008.01831.x

    Article  PubMed  CAS  Google Scholar 

  • Dodd IC, Egea G, Davies WJ (2008b) Accounting for sap flow from different parts of the root system improves the prediction of xylem ABA concentration in plants grown with heterogeneous soil moisture. J Exp Bot 59:4083–4093. doi:10.1093/jxb/ern246

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Dodd IC, Theobald JC, Richer SK, Davies WJ (2009) Partial phenotypic reversion of ABA-deficient flacca tomato (Solanum lycopersicum) scions by a wild-type rootstock: normalising shoot ethylene relations promotes leaf area but does not diminish whole plant transpiration rate. J Exp Bot 60:4029–4039

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Dodd IC, Egea G, Watts CW, Whalley WR (2010) Root water potential integrates discrete soil physical properties to influence ABA signalling during partial rootzone drying. J Exp Bot 61:3543–3551. doi:10.1093/jxb/erq195

    Article  PubMed  CAS  Google Scholar 

  • Doussan C, Vercambre G, Pagès L (1998) Modelling of the hydraulic architecture of root systems: an integrated approach to water absorption—distribution of axial and radial conductances in maize. Ann Bot 81(2): 225–232

  • Doussan C, Pierret A, Garrigues E, Pages L (2006) Water uptake by plant roots: II - Modelling of water transfer in the soil root-system with explicit account of flow within the root system - Comparison with experiments. Plant Soil 283:99–117. doi:10.1007/s11104-004-7904-z

    Article  CAS  Google Scholar 

  • Dzikiti S, Verreynne JS, Stuckens J, Strever A, Verstraeten WW, Swennen R, Coppin P (2010) Determining the water status of satsuma mandarin trees citrus unshiu marcovitch using spectral indices and by combining hyperspectral and physiological data. Agric For Meteorol 150:369–379. doi:10.1016/j.agrformet.2009.12.005

    Article  Google Scholar 

  • Farquhar GD, Cowan IR (1974) Oscillations in stomatal conductance - influence of environmental gain. Plant Physiol 54:769–772. doi:10.1104/pp. 54.5.769

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Feddes RA, Kowalik PJ, Zaradny H (1978) Simulation of field water use and crop yield. Pudoc Wageningen, The Netherlands

    Google Scholar 

  • Franks PJ, Drake PL, Froend RH (2007) Anisohydric but isohydrodynamic: seasonally constant plant water potential gradient explained by a stomatal control mechanism incorporating variable plant hydraulic conductance. Plant Cell Environ 30:19–30. doi:10.1111/j.1365-3040.01600.x

    Article  PubMed  Google Scholar 

  • Hartung W, Aboumandour AA (1980) Abscisic-acid in root cultures of phaseolus-coccineus l. Zeitschrift Fur Pflanzenphysiologie 97:265–269

    Article  CAS  Google Scholar 

  • Holbrook NM, Shashidhar VR, James RA, Munns R (2002) Stomatal control in tomato with ABA-deficient roots: response of grafted plants to soil drying. J Exp Bot 53:1503–1514. doi:10.1093/jexbot/53.373.1503

    Article  PubMed  CAS  Google Scholar 

  • Javaux M, Schröder T, Vanderborght J, Vereecken H (2008) Use of a three-dimensional detailed modeling approach for predicting root water uptake. Vadose Zone J 7:1079–1079

    Article  Google Scholar 

  • Javaux M, Couvreur V, Vanderborght J, Vereecken H (2013) Root Water Uptake: From Three-Dimensional Biophysical Processes to Macroscopic Modeling Approaches. Vadose Zone Journal 12. doi:10.2136/vzj2013.02.0042

  • Kang S (2004) Controlled alternate partial root-zone irrigation: its physiological consequences and impact on water use efficiency. J Exp Bot 55:2437–2446

    Article  PubMed  CAS  Google Scholar 

  • Khalil AAM, Grace J (1993) Does xylem Sap Aba control the stomatal behavior of water-stressed sycamore (acer-pseudoplatanus L) seedlings. J Exp Bot 44:1127–1134. doi:10.1093/jxb/44.7.1127

    Article  CAS  Google Scholar 

  • Li B, Feng Z, Xie M, Sun M, Zhao Y, Liang L, Liu G, Zhang J, Jia W (2011) Modulation of the root-sourced ABA signal along its way to the shoot in vitis riparia × vitis labrusca under water deficit. J Exp Bot 62:1731–1741. doi:10.1093/jxb/erq390

    Article  PubMed  CAS  Google Scholar 

  • Liang JS, Zhang JH, Wong MH (1997) How do roots control xylem sap ABA concentration in response to soil drying? Plant Cell Physiol 38:10–16

    Article  CAS  Google Scholar 

  • Liu FL, Jensen CR, Andersen MN (2005) A review of drought adaptation in crop plants: changes in vegetative and reproductive physiology induced by ABA-based chemical signals. Aust J Agric Res 56:1245–1252. doi:10.1071/ar05062

    Article  CAS  Google Scholar 

  • Liu FL, Song R, Zhang XY, Shahnazari A, Andersen MN, Plauborg F, Jacobsen SE, Jensen CR (2008) Measurement and modelling of ABA signalling in potato (Solanum tuberosum L.) during partial root-zone drying. Environ Exp Bot 63:385–391. doi:10.1016/j.envexpbot.2007.11.015

    Article  CAS  Google Scholar 

  • Marenco RA, Siebke K, Farquhar GD, Ball MC (2006) Hydraulically based stomatal oscillations and stomatal patchiness in Gossypium hirsutum. Funct Plant Biol 33:1103–1113. doi:10.1071/fp06115

    Article  Google Scholar 

  • Martin-Vertedor AI, Dodd IC (2011) Root-to-shoot signalling when soil moisture is heterogeneous: increasing the proportion of root biomass in drying soil inhibits leaf growth and increases leaf abscisic acid concentration. Plant Cell Environ 34:1164–1175. doi:10.1111/j.1365-3040.2011.02315.x

    Article  PubMed  CAS  Google Scholar 

  • Molz FJ (1981) Models of water transport in the soil-plant system - a review. Water Resour Res 17:1245–1260. doi:10.1029/WR017i005p01245

    Article  Google Scholar 

  • Pantin F, Simonneau T, Muller B (2012) Coming of leaf age: control of growth by hydraulics and metabolics during leaf ontogeny. New Phytol 196(2):349–366

    Article  PubMed  Google Scholar 

  • Passioura JB, Tanner CB (1985) Oscillations in apparent hydraulic conductance of cotton plants. Aust J Plant Physiol 12:455–461

    Article  Google Scholar 

  • Puértolas J, Alcobendas R, Alarcón JJ, Dodd IC (2013) Long-distance abscisic acid signalling under different vertical soil moisture gradients depends on bulk root water potential and average soil water content in the root zone. Plant Cell Environ 36:1465–1475. doi:10.1111/pce.12076

    Article  PubMed  Google Scholar 

  • Richards LA (1931) Capillary conduction of liquids through porous mediums. Phys-A J Gen Appl Phys 1:318–333. doi:10.1063/1.1745010

    Google Scholar 

  • Romero P, Dodd IC, Martinez-Cutillas A (2012) Contrasting physiological effects of partial root zone drying in field-grown grapevine (Vitis vinifera L. cv. Monastrell) according to total soil water availability. J Exp Bot 63:4071–4083. doi:10.1093/jxb/ers088

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Schroder T, Javaux M, Vanderborght J, Korfgen B, Vereecken H (2009) Implementation of a microscopic soil-root hydraulic conductivity drop function in a three-dimensional soil-root architecture water transfer model. Vadose Zone J 8:783–792. doi:10.2136/vzj2008.0116

    Article  Google Scholar 

  • Schroder N, Javaux M, Vanderborght J, Steffen B, Vereecken H (2012) Effect of Root Water and Solute Uptake on Apparent Soil Dispersivity: A Simulation Study. Vadose Zone Journal 11. doi:10.2136/vzj2012.0009

  • Schurr U, Gollan T, Schulze ED (1992) Stomatal response to drying soil in relation to changes in the xylem sap composition of helianthus-annuus.2. Stomatal sensitivity to abscisic-acid imported from the xylem sap. Plant Cell Environ 15:561–567. doi:10.1111/j.1365-3040.1992.tb01489.x

    Article  CAS  Google Scholar 

  • Simonneau T, Barrieu P, Tardieu F (1998) Accumulation rate of ABA in detached maize roots correlates with root water potential regardless of age and branching order. Plant Cell Environ 21:1113–1122. doi:10.1046/j.1365-3040.1998.00344.x

    Article  CAS  Google Scholar 

  • Somma F, Hopmans JW, Clausnitzer V (1998) Transient three-dimensional modeling of soil water and solute transport with simultaneous root growth, root water and nutrient uptake. Plant Soil 202:281–293. doi:10.1023/a:1004378602378

    Article  CAS  Google Scholar 

  • Stoll M, Loveys B, Dry P (2000) Hormonal changes induced by partial rootzone drying of irrigated grapevine. J Exp Bot 51:1627–1634. doi:10.1093/jexbot/51.350.1627

    Article  PubMed  CAS  Google Scholar 

  • Taiz L, Zeiger E (2006) Plant physiology/Lincoln Taiz; Eduardo Zeiger. Sinauer, Sunderland, Mass

  • Tardieu F, Davies WJ (1993) Integration of hydraulic and chemical signaling in the control of stomatal conductance and water status of droughted plants. Plant Cell Environ 16:341–349. doi:10.1111/j.1365-3040.1993.tb00880.x

    Article  CAS  Google Scholar 

  • Tardieu F, Simonneau T (1998) Variability among species of stomatal control under fluctuating soil water status and evaporative demand: modelling isohydric and anisohydric behaviours. J Exp Bot 49:419–432. doi:10.1093/jexbot/49.suppl_1.419

    Article  Google Scholar 

  • Van Genuchten MT (1980) A closed form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci Soc Am J 44:892–898

    Article  Google Scholar 

  • Wan XC, Zwiazek JJ (2001) Root water flow and leaf stomatal conductance in aspen (Populus tremuloides) seedlings treated with abscisic acid. Planta 213:741–747. doi:10.1007/s004250100547

    Article  PubMed  CAS  Google Scholar 

  • Wilkinson S, Davies WJ (1997) Xylem sap pH increase: a drought signal received at the apoplastic face of the guard cell that involves the suppression of saturable abscisic acid uptake by the epidermal symplast. Plant Physiol 113:559–573

    PubMed  CAS  PubMed Central  Google Scholar 

  • Wilson JB (1988) A review of evidence on the control of shoot: root ratio, in relation to models. Ann Bot 61:433–449

    Google Scholar 

  • Wolf O, Jeschke WD, Hartung W (1990) Long-distance transport of abscisic-acid in nacl-treated intact plants of lupinus-albus. J Exp Bot 41:593–600. doi:10.1093/jxb/41.5.593

    Article  CAS  Google Scholar 

  • Yin X, van Laar HH (2005) Crop systems dynamics : an ecophysiological simulation model for genotype-by-environment interactions/Xinyou Yin; H. H. van Laar. Academic Publishers, Wageningen

Download references

Acknowledgments

This work is a contribution of the Transregio Collaborative Research Centre 32. Patterns in Soil-Vegetation-Atmosphere Systems: Monitoring, Modelling and Data Assimilation, which is funded by the German research association, DFG. ICD thanks the EU project SIRRIMED (FP7- KBBE-2009-3-245159) for continued support of work on PRD.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katrin Huber.

Additional information

Responsible Editor: Rafael S. Oliveira.

Appendix

Appendix

Influence of shoot volume (buffer size) on transpiration reduction

When shoot volume was smaller than 0.5*VRoot, multi-frequency oscillations in simulated transpiration occurred (Fig. 10) for all scenarios which included chemical signalling. When averaged over time, the trend of transpiration and the signal concentrations (data not shown), were independent of buffer size. Oscillations in stomatal conductance have been observed in several plant species (Buckley 2005), including cotton (with frequencies ranging from 1.3 to 1.8 h−1) (Farquhar and Cowan 1974; Marenco et al. 2006; Passioura and Tanner 1985) and citrus trees when exposed to high vapour pressure deficits (mandarin tree, frequency ca. 1.8 h−1) (Dzikiti et al. 2010). Regardless of the physiological explanation (and site) of this buffer, simulations revealed that, stomatal conductance can oscillate due to a chemical signal arriving from the roots.

Fig. 10
figure 10

Influence of buffer size: Oscillations in transpiration rates are related to buffer size. A buffer size of 1*VRoot corresponds to an average residence time of 0.1 days and a root:shoot ratio of 1

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huber, K., Vanderborght, J., Javaux, M. et al. Modelling the impact of heterogeneous rootzone water distribution on the regulation of transpiration by hormone transport and/or hydraulic pressures. Plant Soil 384, 93–112 (2014). https://doi.org/10.1007/s11104-014-2188-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-014-2188-4

Keywords

Navigation