Skip to main content

Advertisement

Log in

Laboratory-based techniques for assessing the functional traits of biocrusts

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Background and aims

Functional traits are increasingly being used to assess the degree to which ecosystems maintain key processes. The functional traits of vascular plants are well-documented but those of non-vascular plants are poorly known. We describe a comprehensive methodology to measure the functional traits of soil-borne lichens, mosses and liverworts making up biocrust (biological soil crust) communities.

Methods

We collected 40 biocrust taxa from across 10,000 km2 of eastern Australia, and measured eight functional traits using a combination of mensurative studies and laboratory-based experiments. These traits were sediment capture, absorptivity, root (or rhizine) length, height, and the activity of four enzymes involved in key nutrient cycles; β-glucosidase, β-D-cellobiosidase, N-acetyl-β-glucosaminidase and phosphatase.

Results

Taxa were distributed across a broad range of trait values. Sediment capture values ranged from 2 % in the crustose lichen Diploschistes thunbergianus to 83 % in the tall moss Triquetrella papillata. The highest absorptivity value was observed in the moss Bartramia hampeana ssp. hampei, which was able to absorb 12.9 times its dry mass in water, while the lowest value, 0.3, was observed in Diploschistes thunbergianus. Multivariate analyses revealed that biocrust morphological groups differed significantly in their functional profiles.

Conclusions

Our results indicate that biocrust taxa vary greatly in their functional traits and that morphological groups explain, in part, the ability of biocrusts to sequester resources (sediment, moisture) and to undertake key processes associated with the cycling of carbon, nitrogen and phosphorus. This methodology will enhance our understanding of ecosystem functioning in drylands where biocrusts make up a large component of the surface cover and provide a range of ecosystem goods and services.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abràmoff MD, Magalhães PJ, Ram SJ (2004) Image processing with ImageJ. Biophoton Int 11:36–42

    Google Scholar 

  • Adams DJ (2004) Fungal cell wall chitinases and glucanases. Microbiology 150:2029–2035

    Article  CAS  PubMed  Google Scholar 

  • Anderson MJ (2006) Distance-based tests for homogeneity of multivariate dispersions. Biometrics 62:245–253

    Article  PubMed  Google Scholar 

  • Anderson MJ, Walsh DC (2013) PERMANOVA, ANOSIM, and the Mantel test in the face of heterogeneous dispersions: What null hypothesis are you testing? Ecol Monogr 83:557–574

    Article  Google Scholar 

  • Bailey D, Mazurak AP, Rosowski JR (1973) Aggregation of soil particles by algae. J Phycol 9:99–101

    Article  Google Scholar 

  • Barger NN, Herrick JE, Van Zee J, Belnap J (2006) Impacts of biological soil crust disturbance and composition on C and N loss from water erosion. Biogeochemistry 77:247–263

    Article  CAS  Google Scholar 

  • Bell CW, Fricks BE, Rocca JD, et al. (2013) High-throughput fluorometric measurement of potential soil extracellular enzyme activities. J Vis Exp:e50961

  • Belnap J (2003a) Microbes and microfauna associated with biological soil crusts. In: Belnap J, Lange OL (eds) Biological soil crusts: structure, function, and Management. Springer-Verlag, Berlin, pp. 167–174

    Chapter  Google Scholar 

  • Belnap J (2003b) The world at your feet: desert biological soil crusts. Front Ecol Environ 1:181–189

    Article  Google Scholar 

  • Belnap J (2006) The potential roles of biological soil crusts in dryland hydrologic cycles. Hydrol Process 20:3159–3178

    Article  CAS  Google Scholar 

  • Belnap J, Gillette DA (1998) Vulnerability of desert biological soil crusts to wind erosion: the influences of crust development, soil texture, and disturbance. J Arid Environ 39:133–142

    Article  Google Scholar 

  • Belnap J, Büdel B, Lange OL (2003) Biological soil crusts: characteristics and distribution. In: Belnap J, Lange OL (eds) Biological soil crusts: structure, function, and Management. Springer-Verlag, Berlin, pp. 3–30

    Chapter  Google Scholar 

  • Bhattacharya D, Nagpure A, Gupta RK (2007) Bacterial chitinases: properties and potential. Crit Rev Biotechnol 27:21–28

    Article  CAS  PubMed  Google Scholar 

  • Biswas SR, Mallik AU (2010) Disturbance effects on species diversity and functional diversity in riparian and upland plant communities. Ecology 91:28–35

    Article  PubMed  Google Scholar 

  • Bokhorst S, Asplund J, Kardol P, Wardle DA (2015) Lichen physiological traits and growth forms affect communities of associated invertebrates. Ecology 96:2394–2407

    Article  PubMed  Google Scholar 

  • Botta-Dukát Z (2005) Rao’s quadratic entropy as a measure of functional diversity based on multiple traits. J Veg Sci 16:533–540

    Article  Google Scholar 

  • Bowker MA, Maestre FT, Escolar C (2010) Biological crusts as a model system for examining the biodiversity-ecosystem function relationship in soils. Soil Biol Biochem 42:405–417

    Article  CAS  Google Scholar 

  • Bowker MA, Mau RL, Maestre FT, et al. (2011) Functional profiles reveal unique ecological roles of various biological soil crust organisms. Funct Ecol 25:787–795

    Article  Google Scholar 

  • Bowker MA, Maestre FT, Mau RL (2013) Diversity and patch-size distributions of biological soil crusts regulate dryland ecosystem multifunctionality. Ecosystems 16:923–933

    Article  CAS  Google Scholar 

  • Buck WR, Vitt DH (2006) Key to the Genera of Australian Mosses. Flora of Australia Volume 51, Australian Biological Resources Study, Canberra, 2002).

  • Bureau of Meteorology (2015) Bureau of Meteorology, Australian Government http://www.bom.gov.au/. Accessed 20 Aug 2015.

  • Cadotte MW, Carscadden K, Mirotchnick N (2011) Beyond species: functional diversity and the maintenance of ecological processes and services. J Appl Ecol 48:1079–1087

    Article  Google Scholar 

  • Campbell DH (1904) Resistance of drought by liverworts. Torreya 4:81–86

    Google Scholar 

  • Castillo AP, Maestre FT, Palacios P, et al. (2008) Evaluando el papel funcional de la biodiversidad y el patrón espacial: Una aproximación experimental utilizando la costra biológica como modelo. In: Maestre FT, Escudero A, Bonet A (eds) Introducción al análisis espacial de datos en ecología y ciencias ambientales: métodos y aplicaciones. Universidad Rey Juan Carlos, Móstoles, pp. 617–635

    Google Scholar 

  • Castillo-Monroy AP, Bowker MA, García-Palacios P, Maestre FT (2015) Aspects of soil lichen biodiversity and aggregation interact to influence subsurface microbial function. Plant Soil 386:303–316

    Article  CAS  Google Scholar 

  • Catcheside DG (1980) Mosses of South Australia. S.A. Govt, Printer, Adelaide

    Google Scholar 

  • Chown S, Scholtz C (1989) Cryptogam herbivory in Curculionidae (Coleoptera) from the sub-antarctic Prince Edward Islands. The Coleopterists’ Bulletin 43:165–169

    Google Scholar 

  • Concostrina-Zubiri L, Pescador DS, Martínez I, Escudero A (2014) Climate and small scale factors determine functional diversity shifts of biological soil crusts in Iberian drylands. Biodivers Conserv 23:1757–1770

    Article  Google Scholar 

  • R Core Team (2015) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. http://www.R-project.org/.

    Google Scholar 

  • Cornelissen J, Lavorel S, Garnier E, et al. (2003) A handbook of protocols for standardised and easy measurement of plant functional traits worldwide. Aust J Bot 51:335–380

    Article  Google Scholar 

  • Cornelissen JH, Lang SI, Soudzilovskaia NA, During HJ (2007) Comparative cryptogam ecology: a review of bryophyte and lichen traits that drive biogeochemistry. Ann Bot 99:987–1001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cornwell WK, Schwilk LDW, Ackerly DD (2006) A trait-based test for habitat filtering: convex Hull volume. Ecology 87:1465–1471

    Article  PubMed  Google Scholar 

  • Daly GT (1970) Bryophyte and lichen indicators of air pollution in Christchurch, New Zealand. Proceedings of the New Zealand Ecological Society 17:70–79

    Google Scholar 

  • Danin A, Ganor E (1991) Trapping of airborne dust by mosses in the Negev Desert, Israel. Earth Surf Process Landf 16:153–162

    Article  Google Scholar 

  • De Bello F, Lavorel S, Díaz S, et al. (2010) Towards an assessment of multiple ecosystem processes and services via functional traits. Biodivers Conserv 19:2873–2893

    Article  Google Scholar 

  • Delgado-Baquerizo M, Gallardo A, Covelo F, et al. (2015) Differences in thallus chemistry are related to species-specific effects of biocrust-forming lichens on soil nutrients and microbial communities. Funct Ecol 29:1087–1098

    Article  Google Scholar 

  • Díaz S, Cabido M (2001) Vive la difference: plant functional diversity matters to ecosystem processes. Trends Ecol Evol 16:646–655

    Article  Google Scholar 

  • Díaz S, Lavorel S, de Bello F, et al. (2007) Incorporating plant functional diversity effects in ecosystem service assessments. Proc Natl Acad Sci U S A 104:20684–20689

    Article  PubMed  PubMed Central  Google Scholar 

  • Duff SM, Sarath G, Plaxton WC (1994) The role of acid phosphatases in plant phosphorus metabolism. Physiol Plant 90:791–800

    Article  CAS  Google Scholar 

  • Eldridge DJ (1996) Distribution and floristics of terricolous lichens in soil crusts in arid and semi-arid new South Wales, Australia. Aust J Bot 44:581–599

    Article  Google Scholar 

  • Eldridge DJ (1998) Trampling of microphytic crusts on calcareous soils, and its impact on erosion under rain-impacted flow. Catena 33:221–239

    Article  Google Scholar 

  • Eldridge DJ, Greene RSB (1994) Microbiotic soil crusts-a review of their roles in soil and ecological processes in the rangelands of Australia. Aust J Soil Research 32:389–415

    Article  Google Scholar 

  • Eldridge DJ, Koen TB (1998) Cover and floristics of microphytic soil crusts in relation to indices of landscape health. Plant Ecol 137:101–114

    Article  Google Scholar 

  • Eldridge DJ, Leys JF (1999) Wind dispersal of the vagant lichen Chondropsis semiviridis in semi-arid Eastern Australia. Aust J Bot 47:157–164

    Article  Google Scholar 

  • Eldridge DJ, Leys JF (2003) Exploring some relationships between biological soil crusts, soil aggregation and wind erosion. J Arid Environ 53:457–466

    Article  Google Scholar 

  • Eldridge DJ, Rosentreter RR (1999) Morphological groups: a framework for monitoring microphytic crusts in arid landscapes. J Arid Environ 41:11–25

    Article  Google Scholar 

  • Eldridge DJ, Tozer ME (1996) Distribution and floristics of bryophytes in soil crusts in semi-arid and arid Eastern Australia. Aust J Bot 44:223–247

    Article  Google Scholar 

  • Ernst R, Linsenmair KE, Rӧdel M-O (2006) Diversity erosion beyond the species level: dramatic loss of functional diversity after selective logging in two tropical amphibian communities. Biol Conserv 133:143–155

    Article  Google Scholar 

  • Escolar C, Maestre FT, Rey A (2015) Biocrusts modulate warming and rainfall exclusion effects on soil respiration in a semi-arid grassland. Soil Biol Biochem 80:9–17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Filson RB, Rogers RW (1979) Lichens of South Australia. Government Printer, South Australia

    Google Scholar 

  • Galun M, Braun A, Frensdorff A, Galun E (1976) Hyphal walls of isolated lichen fungi. Arch Microbiol 108:9–16

    Article  CAS  PubMed  Google Scholar 

  • Gavazov KS, Soudzilovskaia NA, van Logtestijn RS, et al. (2010) Isotopic analysis of cyanobacterial nitrogen fixation associated with subarctic lichen and bryophyte species. Plant Soil 333:507–517

    Article  CAS  Google Scholar 

  • Giordani P, Brunialti G, Bacaro G, Nascimbene J (2012) Functional traits of epiphytic lichens as potential indicators of environmental conditions in forest ecosystems. Ecol Indic 18:413–420

    Article  Google Scholar 

  • Giordani P, Incerti G, Rizzi G, et al. (2013) Functional traits of cryptogams in Mediterranean ecosystems are driven by water, light and substrate interactions. J Veg Sci 25:778–792

    Article  Google Scholar 

  • Gower JC (1971) A general coefficient of similarity and some of its properties. Biometrics 27:857–871

    Article  Google Scholar 

  • Huneck S (1999) The significance of lichens and their metabolites. Naturwissenschaften 86:559–570

    Article  CAS  PubMed  Google Scholar 

  • Kunstler G, Falster D, Coomes DA, et al. (2016) Plant functional traits have globally consistent effects on competition. Nature 529:204–207.

  • Laliberté E, Legendre P (2010) A distance-based framework for measuring functional diversity from multiple traits. Ecology 91:299–305

    Article  PubMed  Google Scholar 

  • Larney FJ, Bullock MS, Janzen HH, et al. (1998) Wind erosion effects on nutrient redistribution and soil productivity. J Soil Water Conserv 53:133–140

    Google Scholar 

  • Lavorel S (2013) Plant functional effects on ecosystem services. J Ecol 101:4–8

    Article  Google Scholar 

  • Lavorel S, Garnier E (2002) Predicting changes in community composition and ecosystem functioning from plant traits: revisiting the Holy Grail. Funct Ecol 16:545–556

    Article  Google Scholar 

  • Leys JF, Eldridge DJ (1998) Influence of cryptogamic crust disturbance to wind erosion on sand and loam rangeland soils. Earth Surf Process Landf 23:963–974

    Article  Google Scholar 

  • Llop E, Pinho P, Matos P, et al. (2012) The use of lichen functional groups as indicators of air quality in a Mediterranean urban environment. Ecol Indic 13:215–221

    Article  CAS  Google Scholar 

  • Maechler M, Rousseeuw P, Struyf A, et al. (2015) cluster: Cluster Analysis Basics and Extensions. R package version 2.0.3. http://CRAN.R-project.org/package=cluster. Accessed 10 Aug 2015.

  • Maier S, Schmidt TS, Zheng L, et al. (2014) Analyses of dryland biological soil crusts highlight lichens as an important regulator of microbial communities. Biodivers Conserv 23:1735–1755

    Article  Google Scholar 

  • Malcolm R (1983) Assessment of phosphatase activity in soils. Soil Biol Biochem 15:403–408

    Article  CAS  Google Scholar 

  • Matos P, Pinho P, Aragón G, et al. (2015) Lichen traits responding to aridity. J Ecol 103:451–458

    Article  Google Scholar 

  • McCarthy PM (1991) The lichen genus Endocarpon Hedwig in Australia. Lichenologist 23:27–52

  • McCarthy PM (2006). Checklist of Australian liverworts and Hornworts. Australian Biological Resources Study, Canberra Viewed 06 March 2016. http://www.anbg.gov.au/abrs/liverwortlist/liverworts_intro.html

  • McCarthy PM (2015) Checklist of Australian Lichenicolous fungi. Australian Biological Resources Study, Canberra Version 10 December 2015. http://www.anbg.gov.au/abrs/lichenlist/Lichenicolous_Fungi.html

  • McIntyre S, Lavorel S, Landsberg J, Forbes T (1999) Disturbance response in vegetation-towards a global perspective on functional traits. J Veg Sci 10:621–630

    Article  Google Scholar 

  • Mendoza-Aguilar DO, Cortina J, Pando-Moreno M (2014) Biological soil crust influence on germination and rooting of two key species in a Stipa tenacissima steppe. Plant Soil 375:267–274

    Article  CAS  Google Scholar 

  • Michel P, Payton IJ, Lee WG, During HJ (2013) Impact of disturbance on above-ground water storage capacity of bryophytes in New Zealand indigenous tussock grassland ecosystems. N Z J Ecol 37:114–126

    Google Scholar 

  • Mokany K, Raison R, Prokushkin AS (2006) Critical analysis of root: shoot ratios in terrestrial biomes. Glob Chang Biol 12:84–96

    Article  Google Scholar 

  • Moore C, Scott GAM (1979) The ecology of mosses on a sand dune in Victoria, Australia. J Bryol 10:291–311

    Article  Google Scholar 

  • Muzzarelli RAA (2011) Chitin nanostructures in living organisms. In: Gupta NS (ed) Chitin: Formation and Diagenesis. Springer, Dordrecht, pp. 1–34

    Chapter  Google Scholar 

  • Naeem S, Wright JP (2003) Disentangling biodiversity effects on ecosystem functioning: deriving solutions to a seemingly insurmountable problem. Ecol Lett 6:567–579

    Article  Google Scholar 

  • Oksanen J, Blanchet FG, Kindt R, et al. (2015) Vegan: community ecology package. R Package Version 2.3. http://CRAN.R-project.org/package=vegan. Accessed 10 Aug 2015.

  • Pérez-Harguindeguy N, Díaz S, Garnier E, et al. (2013) New handbook for standardised measurement of plant functional traits worldwide. Aust J Bot 61:167–234

    Article  Google Scholar 

  • Petchey OL, Gaston KJ (2002) Functional diversity (FD), species richness and community composition. Ecol Lett 5:402–411

    Article  Google Scholar 

  • Pimentel D, Harvey C, Resosudarmo P, et al. (1995) Environmental and economic costs of soil erosion and conservation benefits. Science 267:1117–1122

    Article  CAS  PubMed  Google Scholar 

  • Pinho P, Dias T, Cruz C, et al. (2011) Using lichen functional diversity to assess the effects of atmospheric ammonia in Mediterranean woodlands. J Appl Ecol 48:1107–1116

    Article  CAS  Google Scholar 

  • Pinho P, Bergamini A, Carvalho P, et al. (2012) Lichen functional groups as ecological indicators of the effects of land-use in Mediterranean ecosystems. Ecol Indic 15:36–42

    Article  Google Scholar 

  • Read CF, Duncan DH, Vesk PA, Elith J (2014) Biocrust morphogroups provide an effective and rapid assessment tool for drylands. J Appl Ecol 51:1740–1749

    Article  PubMed  PubMed Central  Google Scholar 

  • Reynolds R, Belnap J, Reheis M, et al. (2001) Aeolian dust in Colorado Plateau soils: nutrient inputs and recent change in source. Proc Natl Acad Sci U S A 98:7123–7127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rogers R, Lange R (1972) Soil surface lichens in arid and subarid South-Eastern Australia. I Introduction and floristics. Aust J Bot 20:197–213

  • Sancho LG, Green TA, Pintado A (2007) Slowest to fastest: extreme range in lichen growth rates supports their use as an indicator of climate change in Antarctica. Flora - Morphology, Distribution, Functional Ecology of Plants 202:667–673

    Article  Google Scholar 

  • Schachtman DP, Reid RJ, Ayling SM (1998) Phosphorus uptake by plants: from soil to cell. Plant Physiol 116:447–453

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scott GAM (1985) Southern Australian liverworts. Australian Government Publishing Service, Canberra

    Google Scholar 

  • Scott GAM, Stone IG (1976) The mosses of Southern Australia. Australian Government Publishing Service, Canberra

    Google Scholar 

  • Solow A, Polasky S, Broadus J (1993) On the measurement of biological diversity. J Environ Econ Manag 24:60–68

    Article  Google Scholar 

  • Soule T, Anderson IJ, Johnson SL, et al. (2009) Archaeal populations in biological soil crusts from arid lands in North America. Soil Biol Biochem 41:2069–2074

    Article  CAS  Google Scholar 

  • Su Y-G, Li X, Zheng J-G, Huang G (2009) The effect of biological soil crusts of different successional stages and conditions on the germination of seeds of three desert plants. J Arid Environ 73:931–936

    Article  Google Scholar 

  • Villéger S, Mason NWH, Mouillot D (2008) New multidimensional functional diversity indices for a multifaceted framework in functional ecology. Ecology 89:2290–2301

    Article  PubMed  Google Scholar 

  • Villéger S, Miranda JR, Hernández DF, Mouillot D (2010) Contrasting changes in taxonomic vs. functional diversity of tropical fish communities after habitat degradation. Ecol Appl 20:1512–1522

    Article  PubMed  Google Scholar 

  • Warton DI, Wright ST, Wang Y (2012) Distance-based multivariate analyses confound location and dispersion effects. Methods Ecol Evol 3:89–101

    Article  Google Scholar 

  • Westoby M, Wright IJ (2006) Land-plant ecology on the basis of functional traits. Trends Ecol Evol 21:261–268

    Article  PubMed  Google Scholar 

  • White RP, Nackoney J (2003) Drylands, people, and ecosystem goods and services: a Web-based Geospatial analysis. World Resources Institute. http://pdf.wri.org/drylands. Accessed 30 Jan 2012.

  • Wickham H (2009) ggplot2: elegant graphics for data analysis. Springer, New York

    Book  Google Scholar 

Download references

Acknowledgments

We are grateful to Manuel Delgado-Baquerizo for his assistance in developing the enzyme methods. We also thank Samantha Travers, Henri Dubourdieu, Sarah Barkman and Jason Chan, who helped to prepare samples. We are grateful to Martin Mallen-Cooper for helping to design and construct the portable wind tunnel used in this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David J. Eldridge.

Additional information

Responsible Editor: Jeff R. Powell .

Electronic supplementary material

Fig. S1

(DOCX 24 kb)

Fig. S2

(DOCX 85 kb)

Table S1

(DOCX 28 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mallen-Cooper, M., Eldridge, D.J. Laboratory-based techniques for assessing the functional traits of biocrusts. Plant Soil 406, 131–143 (2016). https://doi.org/10.1007/s11104-016-2870-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-016-2870-9

Keywords

Navigation