Skip to main content

Advertisement

Log in

Acid and calcareous soils affect nitrogen nutrition and organic nitrogen uptake by beech seedlings (Fagus sylvatica L.) under drought, and their ectomycorrhizal community structure

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Aims

The role of different soil types for beech productivity and drought sensitivity is unknown. The aim of this experimental study was to compare mycorrhizal diversity between acid sandy and calcareous soils and to investigate how this diversity affects tree performance, nitrogen uptake and use efficiency (NUE).

Methods

Beech trees were germinated and grown in five different soil types (pH 3.8 to 6.7). One-and-a-half-year-old plants were exposed for 6 weeks to sufficient or low soil humidity. Tree biomass, root tip mycorrhizal colonization and community structure, root tip mortality, leaf area, photosynthesis, nitrogen concentrations, NUE and short-term 15N uptake from glutamine were determined.

Results

Soil type did not affect photosynthesis or biomass formation, with one exception in calcareous soil, where root mortality was higher than in the other soil types. Beech in acid soils showed lower mycorrhizal colonization, higher nitrogen tissue concentrations, and lower NUE than those in calcareous soils. Drought had no effect on nitrogen concentrations or NUE but caused reductions in mycorrhizal colonization. Mycorrhizal species richness correlated with nitrogen uptake and NUE. Nitrogen uptake was more sensitive to drought in calcareous soils than in acid soils.

Conclusions

Beech may be more drought-susceptible on calcareous sites because of stronger decrease of organic nitrogen uptake than on acid soils.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

EM:

ectomycorrhizal

N:

nitrogen

NUE:

nitrogen use efficiency

References

  • Agerer R (2006) Colour atlas of ectomycorrhizae. Einhorn-Verlag, Schwaebisch Gmuend, Germany

    Google Scholar 

  • Andrianarisoa KS, Zeller B, Dupouey JL, Dambrine E (2009) Comparing indicators of N status of 50 beech stands (Fagus sylvatica L.) in northeastern France. For Ecol Manag 257:2241–2253

    Article  Google Scholar 

  • Bauer G, Schulze ED, Mund M (1997) Nutrient contents and concentrations in relation to growth of Picea abies and Fagus sylvatica along a European transect. Tree Physiol 17:777—786.

  • Bolte A, Czajkowski T, Kompa T (2007) The north-eastern distribution range of European beech - a review. Forestry 80:413–429

    Google Scholar 

  • Børja I, Nilsen P (2009) Long term effect of liming and fertilization on ectomycorrhizal colonization and tree growth in old scots pine (Pinus sylvestris L.) stands. Plant Soil 314:109–119

    Article  Google Scholar 

  • Carsjens C, Nguyen QN, Guzy J, Knutzen F, Meier IC, Müller M, Finkeldey R, Leuschner C, Polle A (2014) Intra-specific variations of stress-related genes in beech progenies are stronger than drought-induced responses. Tree Physiol 34:1348–1361

    Article  PubMed  Google Scholar 

  • Ciais P, Reichstein M, Viovy N, Granier A, Ogée J, Allard V, Buchmann N, Aubinet M, Chr B, Carrara A, Chevallier F, De Noblet N, Friend A, Friedlingstein P, Gobron N, Grünwald T, Heinesch B, Keronen P, Knohl A, Krinner G, Loustau D, Manca G, Matteucci G, Miglietta F, Ourcival JM, Pilegaard K, Rambal S, Seufert G, Soussana JF, Sanz MJ, Schulze ED, Vesala T, Valentini R (2005) Europe-wide reduction in primary productivity caused by the heat and drought in 2003. Nature 437:529–533

    Article  CAS  PubMed  Google Scholar 

  • Clemmensen KE, Sorensen PL, Michelsen A, Jonasson S, Lena Ström L (2008) Site-dependent N uptake from N-form mixtures by arctic plants, soil microbes and ectomycorrhizal fungi. Oecologia 155:771–783

    Article  PubMed  Google Scholar 

  • Danielsen L, Polle A (2014) Poplar nutrition under drought as affected by ectomycorrhizal colonization. Environ Exp Bot 108:89–98

    Article  CAS  Google Scholar 

  • Dannenmann M, Simon J, Gasche R, Holst J, Naumann PS, Kögel-Knabner I, Knicker H, Mayer H, Schloter M, Pena R, Polle A, Rennenberg H, Papen H (2009) Tree girdling provides insight in the role of labile carbon in the competitive balance of N partitioning between soil microorganisms and adult European beech. Soil Biol Biochem 41:1622–1631

    Article  CAS  Google Scholar 

  • Druebert C, Lang C, Valtanen K, Polle A (2009) Beech carbon productivity as driver of ectomycorrhizal abundance and diversity. Plant Cell Environ 32:992–1003

    Article  CAS  PubMed  Google Scholar 

  • Dučić T, Berthold D, Langenfeld-Heyser R, Beese F, Polle A (2009) Mycorrhizal communities in relation to biomass production and nutrient use efficiency in two varieties of Douglas fir (Pseudotsuga menziesii var. menziesii and Var. glauca) in different forest soils. Soil Biol Biochem 41:742–753

    Article  Google Scholar 

  • Ellenberg H (2009) Vegetation ecology of Central Europe. Cambridge University Press, Cambridge, p. 756

    Google Scholar 

  • Finlay RD, Frostegard A, Sonnerfeldt AM (1992) Utilization of organic and inorganic nitrogen sources by ectomycorrhizal fungi in pure culture and in symbiosis with Pinus contorta Dougl. Ex loud. New Phytol 120:105–115

    Article  Google Scholar 

  • Finzi AC, Berthrong ST (2005) The uptake of amino acids by microbes and trees in three cold-temperate forests. Ecology 86:3345–3353

    Article  Google Scholar 

  • Finzi AC, Norby RJ, Calfapietra C, Gallet-Budyneka A, Gielen B, Holmes WE, Hoosbeek MR, Iverseng CM, Jackson RB, Kubiske ME, Ledford J, Liberloo M, Oren R, Polle A, Pritchard S, Zak DR, Schlesinger WH, Ceulemans R (2007) Increases in nitrogen uptake rather than nitrogen-use efficiency support higher rates of temperate forest productivity under elevated CO2. Proc Natl Acad Sci U S A 104:14014–14019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gessler A, Schrempp S, Matzarakis A, Mayer H, Rennenberg H, Adams MA (2001) Radiation modifies the effect of water availability on the carbon isotope composition of beech (Fagus sylvatica L.). New Phytol 50:653–664

    Article  Google Scholar 

  • Gessler A, Jung K, Gasche R, Papen H, Heidenfelder A, Börner E, Metzler B, Augustin S, Hildebrand E, Rennenberg H (2005) Climate and forest management influence nitrogen balance of European beech forests: microbial N transformations and inorganic N net uptake capacity of mycorrhizal roots. Eur J For Res 124:95–111

    Article  CAS  Google Scholar 

  • Gessler A, Keitel C, Kreuzwieser J, Matyssek R, Seiler W, Rennenberg H (2007) Potential risks for European beech (Fagus sylvatica L.) in a changing climate. Trees Struct Funct 21:1–11

    Article  Google Scholar 

  • Granier A, Reichstein M, Bréda N, Janssens IA, Falge E, Ciais P, Grünwald T, Aubinet M, Berbigier P, Bernhofer C, Buchmann N, Facini O, Grassi G, Heinesch B, Ilvesniemi H, Keronen P, Knohl A, Köstner B, Lagergren F, Lindroth A, Longdoz B, Loustau D, Mateus J, Montagnani L, Nys C, Moors E, Papale D, Peiffer M, Pilegaard K, Pita G, Pumpanen J, Rambal S, Rebmann C, Rodrigues A, Seufert G, Tenhunen J, Vesala I, Wang Q (2007) Evidence for soil water control on carbon and water dynamics in European forests during the extremely dry year: 2003. Agric For Meteorol 143:123–145

    Article  Google Scholar 

  • Grelet GA, Meharg AA, Duff EI, Anderson IC, Alexander IJ (2009) Small genetic differences between ericoid mycorrhizal fungi affect nitrogen uptake by Vaccinium. New Phytol 181:708–718

    Article  CAS  PubMed  Google Scholar 

  • Hammer O, Harper DAT, Ryan PD (2001) PAST: palaeontological statistics software package for education and data analysis. Palaeontol Electron 4:9–17

    Google Scholar 

  • He MZ, Dijkstra FA (2014) Drought effect on plant nitrogen and phosphorus: a metaanalysis. New Phytol 204:924–931

    Article  CAS  PubMed  Google Scholar 

  • Heinrichs R, Brumsack H, Loftfield N, Konig N (1986) Improved pressure digestion system for biological and inorganic materials. J Plant Nutr Soil Sci 149:350–353

    CAS  Google Scholar 

  • Herzog C, Peter M, Pritsch K, Günthardt-Goerg MS, Egli S (2013) Drought and air warming affects abundance and exoenzyme profiles of Cenococcum geophilum associated with Quercus robur, Q. petraea and Q. pubescens. Plant Biol 15:230–237

    Article  CAS  PubMed  Google Scholar 

  • Hobbie EA, Högberg P (2012) Nitrogen isotopes link mycorrhizal fungi and plants to nitrogen dynamics. New Phytol 196:367–382

    Article  CAS  PubMed  Google Scholar 

  • Horton BM, Glen M, Davidson NJ, Ratkowsky D, Close DC, Wardlaw TJ, Mohammed C (2013) Temperate eucalypt forest decline is linked to altered ectomycorrhizal communities mediated by soil chemistry. For Ecol Manag 302:329–337

    Article  Google Scholar 

  • Keller G (1996) Utilization of inorganic and organic nitrogen sources by high-subalpine ectomycorrhizal fungi of Pinus cembra in pure culture. Mycol Res 100:989–998

    Article  CAS  Google Scholar 

  • Kranabetter JM, Durall DM, MacKenzie WH (2009) Diversity and species distribution of ectomycorrhizal fungi along productivity gradients of a southern boreal forest. Mycorrhiza 19:99–111

    Article  CAS  PubMed  Google Scholar 

  • Kranabetter JM, Hawkins BJ, Jones MD, Robbins S, Dyer T, Li T (2015) Species turnover (β-diversity) in ectomycorrhizal fungi linked to NH4 + uptake capacity. Mol Ecol 24:5992–6005

    Article  CAS  PubMed  Google Scholar 

  • Kreuzwieser J, Gessler A (2010) Global climate change and tree nutrition: influence of water availability. Tree Physiol 30:1221–1234

    Article  CAS  PubMed  Google Scholar 

  • Kreuzwieser J, Herschbach C, Stulen I, Wiersema P, Vaalburg W, Rennenberg H (1997) Interactions of NH4 + and L-glutamate with NO3 transport processes of non-mycorrhizal Fagus sylvatica roots. J Exp Bot 48:1431–1438

    Article  CAS  Google Scholar 

  • Lang C, Seven J, Polle A (2011) Host preferences and differential contributions of deciduous tree species shape mycorrhizal species richness in a mixed central European forest. Mycorrhiza 21:297–308

    Article  PubMed  Google Scholar 

  • Leberecht M, Dannenmann M, Gschwendtner S, Bilela S, Meier R, Simon J, Rennenberg H, Schloter M, Polle A (2015) Ectomycorrhizal communities on the roots of two beech (Fagus sylvatica) populations from contrasting climate differ in nitrogen acquisition in a common environment. Appl Environ Microbiol 81:5957–5967

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leuschner C (1999) Zur Abhängigkeit der Baum- und Krautschicht mitteleuropäischer Waldgesellschaften von der Nährstoffversorgung des Bodens. Ber d ReinhTüxen-Ges 11:109–131

    Google Scholar 

  • Leuschner C, Meier IC, Hertel D (2006) On the niche breadth of Fagus sylvatica: soil nutrient status in 50 central European beech stands on a broad range of bedrock types. Ann For Sci 63:355–368

    Article  CAS  Google Scholar 

  • Lilleskov EA, Fahey TJ, Horton TR, Lovett GM (2002) Belowground ectomycorrhizal fungal community change over a nitrogen deposition gradient in Alaska. Ecology 83:104–115

    Article  Google Scholar 

  • Meier IC, Leuschner C (2008) Leaf size and leaf area index in Fagus sylvatica forests: competing effects of precipitation, temperature, and nitrogen availability. Ecosystems 11:655–669

    Article  CAS  Google Scholar 

  • Meier IC, Leuschner C (2014) Nutrient dynamics along a precipitation gradient in European beech forests. Biogeochemistry 120:51–69

    Article  CAS  Google Scholar 

  • Meier IC, Leuschner C, Hertel D (2005) Nutrient return with leaf litter fall in Fagus sylvatica forests across a soil fertility gradient. Plant Ecol 177:99–112

    Article  Google Scholar 

  • Mellert KH, Göttlein A (2012) Comparison of new foliar nutrient thresholds derived from van den Burg’s literature compilation with established central European references. Eur J For Res 131:1461–1472

    Article  Google Scholar 

  • Moeller HV, Peay KG, Fukami T (2014) Ectomycorrhizal fungal traits reflect environmental conditions along a coastal California edaphic gradient. FEMS Microbiol Ecol 87:797–806

    Article  CAS  PubMed  Google Scholar 

  • Monfort-Salvador I, García-Montero LG, Grande MA (2015) Impact of calcium associated to calcareous amendments on ectomycorrhizae in forests: a review. J Soil Sci Plant Nutr 15:217–231

    Google Scholar 

  • Müller-Haubold H, Hertel D, Seidel D, Knutzen F, Leuschner C (2013) Climate responses of aboveground productivity and allocation in Fagus sylvatica: a transect study in mature forests. Ecosystems 16:1498–1516

    Article  Google Scholar 

  • Näsholm T, Persson J (2001) Organic nitrogen acquisition by boreal forest plants. Physiol Plant 111:419–442

    Article  PubMed  Google Scholar 

  • Näsholm T, Kielland K, Ganeteg U (2009) Uptake of organic nitrogen by plants. New Phytol 182:31–48

    Article  PubMed  Google Scholar 

  • Näsholm T, Högberg P, Franklin O, Metcalfe D, Keel SG, Campbell C, Hurry V, Linder S, Högberg MN (2013) Are ectomycorrhizal fungi alleviating or aggravating nitrogen limitation of tree growth in boreal forests? New Phytol 198:214–221

    Article  PubMed  Google Scholar 

  • Oberwinkler F, Riess K, Bauer R, Selosse MA, Weiß M, Garnica S, Zuccaro A (2013) Enigmatic Sebacinales. Mycol Prog 12:1–27

    Article  Google Scholar 

  • Pena R, Polle A (2014) Attributing functions to ectomycorrhizal fungal identities in assemblages for nitrogen acquisition under stress. ISME J 8:321–330

    Article  CAS  PubMed  Google Scholar 

  • Pena R, Offermann C, Simon J, Naumann PS, Geßler A, Holst J, Dannenmann M, Mayer H, Kögel-Knabner I, Rennenberg H, Polle A (2010) Girdling affects ectomycorrhizal diversity and reveal functional differences of EM community composition in a mature beech forest (Fagus sylvatica). Appl Environ Microbiol 76:1831–1841

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pena R, Tejedor J, Zeller B, Dannenmann M, Polle A (2013a) Interspecific temporal and spatial differences for the acquisition of litter-derived nitrogen of ectomycorrhizal fungal assemblages. New Phytol 199:520–528

    Article  CAS  PubMed  Google Scholar 

  • Pena R, Simon J, Rennenberg H, Polle A (2013b) Ectomycorrhiza affect architecture and nitrogen partitioning of beech (Fagus sylvatica L.) seedlings under shade and drought. Environ Exp Bot 87:207–217

    Article  Google Scholar 

  • Persson J, Högberg P, Ekblad A, Högberg MN, Nordgren A, Näsholm T (2003) Nitrogen acquisition from inorganic and organic sources by boreal forest plants in the field. Oecologia 137:252–257

    Article  PubMed  Google Scholar 

  • Plassard C, Bonafos B, Touraine B (2000) Differential effects of mineral and organic N sources, and of ectomycorrhizal infection by Hebeloma cylindrosporum, on growth and N utilization in Pinus pinaster. Plant Cell Environ 23:1195–1205

    Article  Google Scholar 

  • Pretzsch H, Rotzer T, Matyssek R, Grams TEE, Häberle KH, Pritsch K, Kerner R, Munch JC (2014) Mixed Norway spruce (Picea abies [L.] Karst) and European beech (Fagus sylvatica [L.]) stands under drought: from reaction pattern to mechanism. Trees Struct Funct 28:1305–1321

    Article  CAS  Google Scholar 

  • Rennenberg H, Dannenmann M, Gessler A, Kreuzwieser J, Simon J, Papen H (2009) Nitrogen balance in forest soils: nutritional limitation of plants under climate change stresses. Plant Biol 11:4–23

    Article  CAS  PubMed  Google Scholar 

  • Rineau F, Garbaye J (2009) Does forest liming impact the enzymatic profiles of ectomycorrhizal communities through specialized fungal symbionts? Mycorrhiza 19:493–500

    Article  CAS  PubMed  Google Scholar 

  • Rineau F, Maurice JM, Nys C, Voiry H, Garbaye J (2010) Forest liming durably impact the communities of ectomycorrhizas and fungal epigeous fruiting bodies. Ann For Sci 67:110

    Article  Google Scholar 

  • Ruehr NK, Offermann CA, Gessler A, Winkler JB, Ferrio JP, Buchmann N, Barnard RL (2009) Drought effects on allocation of recent carbon: from beech leaves to soil CO2 efflux. New Phytol 184:950–961

    Article  CAS  PubMed  Google Scholar 

  • Sardans J, Penuelas J (2012) The role of plants in the effects of global change on nutrient availability and stoichiometry in the plant-soil system. Plant Physiol 160:1741–1761

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schmidt S, Handley LL, Sangtiean T (2006) Effects of nitrogen source and ectomycorrhizal association on growth and delta N-15 of two subtropical eucalyptus species from contrasting ecosystems. Funct Plant Biol 33:367–379

    Article  CAS  Google Scholar 

  • Shi L, Guttenberger M, Kottke I, Hampp R (2002) The effect of drought on mycorrhizas of beech (Fagus sylvatica L.): changes in community structure, and the content of carbohydrates and nitrogen storage bodies of the fungi. Mycorrhiza 12:303–311

    Article  CAS  PubMed  Google Scholar 

  • Stoelken G, Simon J, Ehlting B, Rennenberg H (2010) The presence of amino acids affects inorganic N uptake in non-mycorrhizal seedlings of European beech (Fagus sylvatica). Tree Physiol 30:1118–1128

    Article  CAS  PubMed  Google Scholar 

  • Talbot JM, Treseder KK (2010) Controls over mycorrhizal uptake of organic nitrogen. Pedobiologia 53:169–179

    Article  CAS  Google Scholar 

  • Turnbull MH, Goodall R, Stewart GR (1995) The impact of mycorrhizal colonisation upon nitrogen source utilization and metabolism in seedlings of Eucalyptus grandis hill ex maiden and Eucalyptis maculata hook. Plant Cell Environ 18:1386–1394

    Article  CAS  Google Scholar 

  • Twieg BD, Durall DM, Simard SW, Jones MD (2009) Influence of soil nutrients on ectomycorrhizal communities in a chronosequence of mixed temperate forests. Mycorrhiza 19:305–316

    Article  PubMed  Google Scholar 

  • Valtanen K, Eissfeller V, Beyer F, Hertel D, Scheu S, Polle A (2014) Carbon and nitrogen fluxes between beech and their ectomycorrhizal assemblage. Mycorrhiza 24:645–650

    Article  CAS  PubMed  Google Scholar 

  • van der Heijden MGA, Martin FM, Selosse MA, Sanders IR (2015) Mycorrhizal ecology and evolution: the past, the present, and the future. New Phytol 205:1406–1423

    Article  PubMed  Google Scholar 

  • Walker JKM, Phillips LA, Jones MD (2014) Ectomycorrhizal fungal hyphae communities vary more along a pH and nitrogen gradient than between decayed wood and mineral soil microsites. Botany-Botanique 92:453–463

    Article  Google Scholar 

  • Williams AP, Craig D, Allen CD, Macalady AK, Griffin D, Woodhouse CA, Meko DM, Swetnam TW, Rauscher SR, Seager R, Grissino-Mayer HD, Dean JS, Cook ER, Gangodagamage C, Cai M, McDowell NG (2013) Temperature as a potent driver of regional forest drought stress and tree mortality. Nat Clim Chang 3:292–297

    Article  Google Scholar 

  • Winkler JB, Dannenmann M, Simon J, Pena R, Offermann C, Sternad W, Clemenz C, Naumann PS, Gasche R, Kögel-Knabner I, Gessler A, Rennenberg H, Polle A (2010) Carbon and nitrogen balance in beech roots under competitive pressure of soil-borne microorganisms induced by girdling, drought and glucose application. Funct Plant Biol 37:879–889

    Article  CAS  Google Scholar 

  • Zavišić A, Nassal P, Yang N, Heuck C, Spohn M, Marhan S, Pena R, Kandeler E, Polle A (2016) Phosphorus availabilities in beech (Fagus sylvatica L.) forests impose habitat filtering on ectomycorrhizal communities and impact on tree nutrition. Soil Biol Biochem 98:127–137

    Article  Google Scholar 

  • Zhang J, Taniguchi T, Tateno RXM, Du S, Liu GB, Yamanaka N (2013) Ectomycorrhizal fungal communities of Quercus liaotungensis along local slopes in the temperate oak forests on the loess plateau, China. Ecol Res 28:297–305

    Article  Google Scholar 

Download references

Acknowledgments

We are grateful to M. Smiatacz and to T. Klein (Laboratory for Radio-Isotopes, Universität Göttingen) for plant maintenance and excellent technical support. We thank Dr. R. Pena for critical reading and comments on the manuscript. Soil nutrients were determined in the Central Laboratory of the Department for Ökopedologie der gemäßigten Zonen (Büsgen Institut, Universität Göttingen). 15N analyses were conducted in the Kompetenzzentrum für Stabile Isotope (KOSI) (Universität Göttingen) under the supervision of Dr. J. Dyckmans. The research was funded by the Deutsche Forschungsgemeinschaft (Po362/19-1) and partly by the DFG Priority Program 1374 “Infrastructure-Biodiversity-Exploratories” (Po362/18-3). J. T. acknowledges a postdoctoral fellowship awarded by the Chinese Science Council (CSC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea Polle.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Responsible Editor: Tatsuhiro Ezawa.

Electronic supplementary material

ESM 1

(PDF 80.4 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Leberecht, M., Tu, J. & Polle, A. Acid and calcareous soils affect nitrogen nutrition and organic nitrogen uptake by beech seedlings (Fagus sylvatica L.) under drought, and their ectomycorrhizal community structure. Plant Soil 409, 143–157 (2016). https://doi.org/10.1007/s11104-016-2956-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-016-2956-4

Keywords

Navigation