Skip to main content
Log in

Estimating root: shoot ratio and soil carbon inputs in temperate grasslands with the RothC model

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Background and aims

Carbon inputs to soil are mostly site- and management-nonspecific estimates based on measured yield. However, in grasslands most carbon input is root-derived and plant carbon allocation patterns are known to vary strongly across sites and management regimes. The aim here was to estimate carbon inputs by fitting the RothC model to time series of soil organic carbon (SOC) data from field sites and to explain the observed variability in root: shoot ratio (R:S).

Methods

Time series of SOC stocks in 15 different temperate grasslands were simulated using eight different literature-derived R:S values, which were compared to the optimised, site-specific R:S. The model-derived root inputs were validated with literature-derived root biomass data.

Results

A single, static R:S for yield-based carbon input estimation for all grasslands was not appropriate. Nitrogen fertilisation (R2 = 0.57) significantly reduced the optimised R:S, which can be explained by the higher investment of plants in roots for nitrogen acquisition under nitrogen deficiency. The average R:S derived was 5.9 ± 1.9 for unfertilised soils and 2.4 ± 1.5 for fertilised soils.

Conclusions

The results enable distinction of unfertilised and fertilised temperate grasslands regarding carbon input parameterisation for the RothC model and highlight the importance of nutrient regime for the carbon cycle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Allen AS, Schlesinger WH (2004) Nutrient limitations to soil microbial biomass and activity in loblolly pine forests. Soil Biol Biochem 36:581–589. doi:10.1016/j.soilbio.2003.12.002

    Article  CAS  Google Scholar 

  • Ammann C, Flechard CR, Leifeld J, Neftel A, Fuhrer J (2007) The carbon budget of newly established temperate grassland depends on management intensity. Agric Ecosyst Environ 121:5–20. doi:10.1016/j.agee.2006.12.002

    Article  CAS  Google Scholar 

  • Andrén O, Kätterer T (1997) ICBM: the introductory carbon balance model for exploration of soil carbon balances. Ecol Appl 7:1226–1236

    Article  Google Scholar 

  • Andrén O, Kätterer T, Karlsson T, Eriksson J (2008) Soil C balances in Swedish agricultural soils 1990–2004, with preliminary projections. Nutr Cycl Agroecosyst 81:129–144

    Article  Google Scholar 

  • Bolin B, Sukumar R, Ciais P, Cramer W, Jarvis P, Kheshgi H, Nobre C, Semenov S, Steffen W (2000) Global perspective. Watson RT, Bolin B, Ravindranath NH, Verardo David J, Dokken David J. Special report on land use, land-use change and forestry. Cambridge University Press, Cambridge, UK

    Google Scholar 

  • Bolinder MA, Angers DA, Bélanger G, Michaud R, Laverdière MR (2002) Root biomass and shoot to root ratios of perennial forage crops in eastern Canada. Can J Plant Sci 82:731–737. doi:10.4141/P01-139

    Article  Google Scholar 

  • Bolinder M, Janzen H, Gregorich E, Angers D, VandenBygaart A (2007) An approach for estimating net primary productivity and annual carbon inputs to soil for common agricultural crops in Canada. Agric Ecosyst Environ 118:29–42

    Article  Google Scholar 

  • Bolinder MA, Kätterer T, Andrén O, Parent LE (2012) Estimating carbon inputs to soil in forage-based crop rotations and modeling the effects on soil carbon dynamics in a Swedish long-term field experiment. Can J Soil Sci 92:821–833. doi:10.4141/cjss2012-036

    Article  Google Scholar 

  • Borgen SK, Grønlund A, Andrén O, Kätterer T, Tveito OE, Bakken LR, Paustian K (2012) CO2 emissions from cropland in Norway estimated by IPCC default and Tier 2 methods. Greenhouse Gas Meas Manage 2:5–21. doi:10.1080/20430779.2012.672306

    Article  CAS  Google Scholar 

  • Calanca P, Vuichard N, Campbell C, Viovy N, Cozic A, Fuhrer J, Soussana JF (2007) Simulating the fluxes of CO2 and N2O in European grasslands with the Pasture Simulation Model (PaSim). Agric Ecosyst Environ 121:164–174. doi:10.1016/j.agee.2006.12.010

    Article  CAS  Google Scholar 

  • Campbell C, Zentner R, Selles F, Biederbeck V, McConkey B, Blomert B, Jefferson P (2000) Quantifying short-term effects of crop rotations on soil organic carbon in southwestern Saskatchewan. Can J Soil Sci 80:193–202

    Article  Google Scholar 

  • Christensen BT, Rasmussen J, Eriksen J, Hansen EM (2009) Soil carbon storage and yields of spring barley following grass leys of different age. Eur J Agron 31:29–35

    Article  CAS  Google Scholar 

  • Christopher SF, Lal R (2007) Nitrogen management affects carbon sequestration in north American cropland soils. Crit Rev Plant Sci 26:45–64. doi:10.1080/07352680601174830

    Article  CAS  Google Scholar 

  • Coleman DC, Jenkinson DS (1996) RothC-26.3 - A model for the turnover of carbon in soil. In: Powlson, DS, Smith, P, Smith, JU (Eds), Evaluation of soil organic matter models using existing long-term datasets, NATO ASI Series I 1996 edn Springer, Berlin

  • Craine JM, Morrow C, Fierer N (2007) Microbial nitrogen limitation increases decomposition. Ecology 88:2105–2113. doi:10.1890/06-1847.1

    Article  PubMed  Google Scholar 

  • Debreczeni K, Körschens M (2003) Long-term field experiments of the world. Archives Agron Soil Sci 49:465–483

    Article  Google Scholar 

  • Ericsson T (1995) Growth and shoot: root ratio of seedlings in relation to nutrient availability. Nutrient Uptake and Cycling in Forest Ecosystems. Springer

  • Falloon P, Smith P, Coleman K, Marshall S (1998) Estimating the size of the inert organic matter pool from total soil organic carbon content for use in the rothamsted carbon model. Soil Biol Biochem 30:1207–1211. doi:10.1016/s0038-0717(97)00256-3

    Article  CAS  Google Scholar 

  • Fiala K (2010) Belowground plant biomass of grassland ecosystems and its variation according to ecological factors. Ekológia (Bratislava) 29:182–206

    Article  Google Scholar 

  • Fornara D, Tilman D (2008) Plant functional composition influences rates of soil carbon and nitrogen accumulation. J Ecol 96:314–322

    Article  CAS  Google Scholar 

  • Franko U, Crocker GJ, Grace PR, Klír J, Körschens M, Poulton PR, Richter DD (1997) Simulating trends in soil organic carbon in long-term experiments using the CANDY model. Geoderma 81:109–120. doi:10.1016/S0016-7061(97)00084-0

    Article  Google Scholar 

  • Franzluebbers AJ (2012) Grass roots of soil carbon sequestration. Carbon Management 3:9–11. doi:10.4155/cmt.11.73

    Article  Google Scholar 

  • Gill RA, Jackson RB (2000) Global patterns of root turnover for terrestrial ecosystems. New Phytol 147:13–31

    Article  Google Scholar 

  • Gottschalk P, Smith JU, Wattenbach M, Bellarby J, Stehfest E, Arnell N, Osborn TJ, Jones C, Smith P (2012) How will organic carbon stocks in mineral soils evolve under future climate? Global projections using RothC for a range of climate change scenarios. Biogeosciences 9:3151–3171. doi:10.5194/bg-9-3151-2012

    Article  CAS  Google Scholar 

  • Hansson A-C, Pettersson R, Paustian K (1987) Shoot and root production and nitrogen uptake in barley, with and without nitrogen fertilization. J Agron Crop Sci 158:163–171

    Article  Google Scholar 

  • Hertel D, Leuschner C (2002) A comparison of four different fine root production estimates with ecosystem carbon balance data in a Fagus–Quercus mixed forest. Plant Soil 239:237–251

    Article  CAS  Google Scholar 

  • Jackson RB, Canadell J, Ehleringer JR, Mooney HA, Sala OE, Schulze ED (1996) A global analysis of root distributions for terrestrial biomes. Oecologia 108:389–411. doi:10.1007/bf00333714

    Article  Google Scholar 

  • Jones CA (1983) Effect of soil texture on critical bulk densities for root growth. Soil Sci Soc Am J 47:1208–1211

    Article  Google Scholar 

  • Kätterer T, Bolinder MA, Andrén O, Kirchmann H, Menichetti L (2011) Roots contribute more to refractory soil organic matter than above-ground crop residues, as revealed by a long-term field experiment. Agric Ecosyst Environ 141:184–192. doi:10.1016/j.agee.2011.02.029

    Article  Google Scholar 

  • Kätterer T, Bolinder M, Berglund K, Kirchmann H (2012) Strategies for carbon sequestration in agricultural soils in northern Europe. Acta Agriculturae Scandinavica, section A–Anim Sci 62: 181–198

  • Keiluweit M, Bougoure JJ, Nico PS, Pett-Ridge J, Weber PK, Kleber M (2015) Mineral protection of soil carbon counteracted by root exudates. Nat Clim Chang 5:588–595

    Article  CAS  Google Scholar 

  • Kirkby CA, Richardson AE, Wade LJ, Passioura JB, Batten GD, Blanchard C, Kirkegaard JA (2014) Nutrient availability limits carbon sequestration in arable soils. Soil Biol Biochem 68:402–409. doi:10.1016/j.soilbio.2013.09.032

    Article  CAS  Google Scholar 

  • Kramberger B, Podvršnik M, Gselman A, Šuštar V, Kristl J, Muršec M, Lešnik M, Škorjanc D (2015) The effects of cutting frequencies at equal fertiliser rates on bio-diverse permanent grassland: Soil organic C and apparent N budget. Agriculture, Ecosystems & Environment 212:13–20. doi:10.1016/j.agee.2015.06.001

    Article  CAS  Google Scholar 

  • Kuzyakov Y (2002) Review: factors affecting rhizosphere priming effects. J Plant Nutr Soil Sci 165:382

    Article  CAS  Google Scholar 

  • Kuzyakov Y, Domanski G (2000) Carbon input by plants into the soil. Review. J Plant Nutr Soil Sci 163:421–431

    Article  CAS  Google Scholar 

  • Leifeld J, Meyer S, Budge K, Sebastia MT, Zimmermann M, Fuhrer J (2015) Turnover of grassland roots in mountain ecosystems revealed by their radiocarbon signature: role of temperature and management. PLoS One 10:e0119184

    Article  PubMed  PubMed Central  Google Scholar 

  • Li C, Frolking S, Crocker GJ, Grace PR, Klír J, Körchens M, Poulton PR (1997) Simulating trends in soil organic carbon in long-term experiments using the DNDC model. Geoderma 81:45–60

    Article  Google Scholar 

  • Lin H, Zhang Y (2013) Evaluation of six methods to predict grassland net primary productivity along an altitudinal gradient in the Alxa rangeland, western Inner Mongolia, China. Grassl Sci 59:100–110

    Article  Google Scholar 

  • Loague K, Green RE (1991) Statistical and graphical methods for evaluating solute transport models overview and application. J Contam Hydrol 7:51–74

    Article  CAS  Google Scholar 

  • Ludwig B, Schulz E, Rethemeyer J, Merbach I, Flessa H (2007) Predictive modelling of C dynamics in the long-term fertilization experiment at Bad Lauchstädt with the rothamsted carbon model. Eur J Soil Sci 58:1155–1163. doi:10.1111/j.1365-2389.2007.00907.x

    Article  CAS  Google Scholar 

  • Mueller KE, Tilman D, Fornara DA, Hobbie SE (2013) Root depth distribution and the diversity–productivity relationship in a long-term grassland experiment. Ecology 94:787–793. doi:10.1890/12-1399.1

    Article  Google Scholar 

  • Munns R (2002) Comparative physiology of salt and water stress. Plant Cell Environ 25:239–250

    Article  CAS  PubMed  Google Scholar 

  • Neff JC, Townsend AR, Gleixner G, Lehman SJ, Turnbull J, Bowman WD (2002) Variable effects of nitrogen additions on the stability and turnover of soil carbon. Nature 419:915–917

    Article  CAS  PubMed  Google Scholar 

  • Parton WJ, Stewart JWB, Cole CV (1988) Dynamics of C, N, P and S in grassland soils- a model. Biogeochemistry 5:109–131. doi:10.1007/bf02180320

    Article  CAS  Google Scholar 

  • Parton W, Scurlock J, Ojima D, Gilmanov T, Scholes R, Schimel DS, Kirchner T, Menaut JC, Seastedt T, Garcia Moya E (1993) Observations and modeling of biomass and soil organic matter dynamics for the grassland biome worldwide. Glob Biogeochem. Cycle 7:785–809

    Article  CAS  Google Scholar 

  • Pinheiro J, Bates D, DeBroy S, Sarkar D (2009) nlme: Linear and Nonlinear Mixed Effects. Models R package version 3: 1–96

  • Poeplau C, Don A (2013) Sensitivity of soil organic carbon stocks and fractions to different land-use changes across Europe. Geoderma 192:189–201

    Article  CAS  Google Scholar 

  • Poeplau C, Bolinder MA, Kirchmann H, Kätterer T (2016) Phosphorus fertilisation under nitrogen limitation can deplete soil carbon stocks: evidence from Swedish meta-replicated long-term field experiments. Biogeosciences 13:1119–1127. doi:10.5194/bg-13-1119-2016

    Article  Google Scholar 

  • Rasse DP, Rumpel C, Dignac MF (2005) Is soil carbon mostly root carbon? Mechanisms for a specific stabilisation. Plant Soil 269:341–356. doi:10.1007/s11104-004-0907-y

    Article  CAS  Google Scholar 

  • Reed S, Vitousek P, Cleveland C (2011) Are patterns in nutrient limitation belowground consistent with those aboveground: results from a 4 million year chronosequence. Biogeochemistry 106:323–336. doi:10.1007/s10533-010-9522-6

    Article  CAS  Google Scholar 

  • Rumpel C, Crème A, Ngo P, Velásquez G, Mora M, Chabbi A (2015) The impact of grassland management on biogeochemical cycles involving carbon, nitrogen and phosphorus. Journal of soil science and plant nutrition: 0–0

  • Schneider MK, Lüscher A, Frossard E, Nösberger J (2006) An overlooked carbon source for grassland soils: loss of structural carbon from stubble in response to elevated pCO2 and nitrogen supply. New Phytol 172:117–126. doi:10.1111/j.1469-8137.2006.01796.x

    Article  CAS  PubMed  Google Scholar 

  • Seiger L, Merchant H (1997) Mechanical control of Japanese knotweed (Fallopia japonica [Houtt.] Ronse Decraene): effects of cutting regime on rhizomatous reserves. Natural Areas Journal 17:341–345

    Google Scholar 

  • Senapati N, Smith P, Wilson B, Yeluripati JB, Daniel H, Lockwood P, Ghosh S (2013) Projections of changes in grassland soil organic carbon under climate change are relatively insensitive to methods of model initialization. Eur J Soil Sci 64:229–238. doi:10.1111/ejss.12014

    Article  CAS  Google Scholar 

  • Sierra CA, Müller M, Trumbore SE (2012) Models of soil organic matter decomposition: the SoilR package, version 1.0. Geosci Model Dev 5:1045–1060. doi:10.5194/gmd-5-1045-2012

    Article  Google Scholar 

  • Sochorová L, Jansa J, Verbruggen E, Hejcman M, Schellberg J, Kiers ET, Johnson NC (2016) Long-term agricultural management maximizing hay production can significantly reduce belowground C storage. Agric Ecosyst Environ 220:104–114

    Article  Google Scholar 

  • Soussana J-F, Loiseau P, Vuichard N, Ceschia E, Balesdent J, Chevallier T, Arrouays D (2004) Carbon cycling and sequestration opportunities in temperate grasslands. Soil Use Manag 20:219–230

    Article  Google Scholar 

  • Svendsen H, Hansen S, Jensen H (1995) Simulation of crop production, water and nitrogen balances in two German agro-ecosystems using the DAISY model. Ecol Model 81:197–212

    Article  CAS  Google Scholar 

  • Taghizadeh-Toosi A, Christensen BT, Hutchings NJ, Vejlin J, Kätterer T, Glendining M, Olesen JE (2014) C-TOOL: a simple model for simulating whole-profile carbon storage in temperate agricultural soils. Ecol Model 292:11–25. doi:10.1016/j.ecolmodel.2014.08.016

    Article  CAS  Google Scholar 

  • Vinther FP (2006) Effects of cutting frequency on plant production, N-uptake and N2 fixation in above- and below-ground plant biomass of perennial ryegrass–white clover swards. Grass Forage Sci 61:154–163. doi:10.1111/j.1365-2494.2006.00519.x

    Article  CAS  Google Scholar 

  • Weihermueller L, Graf A, Herbst M, Vereecken H (2013) Simple pedotransfer functions to initialize reactive carbon pools of the RothC model. Eur J Soil Sci 64:567–575

    Article  CAS  Google Scholar 

  • Welbank, PJ, Gibb, MJ, Taylor, PJ, Williams, ED (1973) Root growth of cereal crops. Rothamsted experimental station report

  • Werth M, Brauckmann H-J, Broll G, Schreiber K-F (2005) Analysis and simulation of soil organic-carbon stocks in grassland ecosystems in SW Germany. J Plant Nutr Soil Sci 168:472–482. doi:10.1002/jpln.200421704

    Article  CAS  Google Scholar 

  • Wiesmeier M, Hübner R, Kögel-Knabner I (2015) Stagnating crop yields: an overlooked risk for the carbon balance of agricultural soils? Sci Total Environ 536:1045–1051

    Article  CAS  PubMed  Google Scholar 

  • Wilson JB (1988) A review of evidence on the control of shoot: root ratio, in relation to models Annals of Botany: 433–449.

  • Yang Y, Fang J, Ji C, Han W (2009) Above- and belowground biomass allocation in Tibetan grasslands. J Veg Sci 20:177–184. doi:10.1111/j.1654-1103.2009.05566.x

    Article  Google Scholar 

  • Zak DR, Holmes WE, MacDonald NW, Pregitzer KS (1999) Soil temperature, matric potential, and the kinetics of microbial respiration and nitrogen mineralization. Soil Sci Soc Am J 63:575–584. doi:10.2136/sssaj1999.03615995006300030021x

    Article  CAS  Google Scholar 

Download references

Acknowledgments

I thank the Lawes Agricultural Trust and Rothamsted Research for data from the e-RA database. The Rothamsted Long-Term Experiments National Capability (LTE-NCG) is supported by the UK Biotechnology and Biological Sciences Research Council and the Lawes Agricultural Trust. I am grateful to Margaret Glendining (Rothamsted Research) for quality checking and corrections relating to the Park Grass data. I further thank the state office of agriculture, environment and rural areas for Schleswig Holstein, the state office of environment, measurements and nature conservation for Baden-Württemberg, the French National Institute of Agricultural Research (INRA, Katja Klumpp) and Arezoo Taghizadeh-Toosi (Aarhus University, Department of Agroecology, Tjele 8830, Denmark) for providing data. Finally I like to thank the group of Axel Don for fruitful comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher Poeplau.

Additional information

Responsible Editor: Zucong Cai.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Poeplau, C. Estimating root: shoot ratio and soil carbon inputs in temperate grasslands with the RothC model. Plant Soil 407, 293–305 (2016). https://doi.org/10.1007/s11104-016-3017-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-016-3017-8

Keywords

Navigation