Skip to main content
Log in

Growth and metal accumulation of young forest trees and understorey plants on contaminated topsoil: influence of subsoil and time

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Aims

The study investigated the growth and metal accumulation over time of young forest vegetation growing on metal-contaminated topsoil above either acidic or calcareous subsoil.

Methods

A 4-year model ecosystem experiment was performed under quasi-natural conditions. The heavy metal (HM) contaminated topsoil contained around 3000 mg/kg Zn, 600 Cu, 100 Pb, 9 Cd.

Results

Total biomass was 25.7% lower on the acidic than on the calcareous subsoil. The HM topsoil did not affect total understorey and Salix biomass, but decreased the growth of Populus, Betula and on the acidic subsoil also that of Picea. Leaf Cd and Zn concentrations were around 6 and 1000 mg/kg, respectively, in Populus and Salix on the HM topsoil, and 0.6 and 200 mg/kg in Picea and understorey. Leaf and wood HM concentrations, were lower in Populus and Salix on the calcareous than on the acidic subsoil. Temporal trends differed among the investigated metals. The HM-induced relative increases in leaf and wood metal concentrations were lower by at least an order of magnitude than in the respective soluble topsoil metal concentrations. Over the four years, Zn was increasingly accumulated in older twigs in Picea.

Conclusions

The selected native trees are suited for phytomanagement of HM-contaminated topsoils. Subsoil acidity is a relevant factor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Alloway BJ (2013) Sources of heavy metals and metalloids in soils. Environm Pollut book series 22:11–50

  • André O, Vollenweider P, Günthardt-Goerg MS (2006) Foliage response to heavy metal contamination in sycamore maple (Acer pseudoplatanus L.). Forest Snow and Landscape Research 80:275–288

    Google Scholar 

  • Antweiler RC, Taylor HE (2008) Evaluation of statistical treatments of left-censored environmental data using coincident uncensored data sets: I. Summary statistics. Environ Sci Technol 42:3732–3738

    Article  CAS  PubMed  Google Scholar 

  • Baum S, Bolte A, Weih M (2012) High value of short rotation coppice plantations for phytodiversity in rural landscapes. GCB Bioenergy 4:728–738

    Article  Google Scholar 

  • Bolan NS, Park JH, Robinson B, Naidu R, Huh KY (2011) Phytostabilization: a green approach to contaminant containment. Adv Agron 112:145–204

    Article  CAS  Google Scholar 

  • Boyter MJ, Brummer JE, Leininger WC (2009) Growth and metal accumulation of Geyer and mountain willow grown in topsoil versus amended mine tailings. Water Air Soil Pol 198:17–29

    Article  CAS  Google Scholar 

  • Brunetti G, Soler-Rovira P, Farrag K, Senesi N (2009) Tolerance and accumulation of heavy metals by wild plant species grown in contaminated soils in Apulia region southern Italy. Plant Soil 318:285–298

    Article  CAS  Google Scholar 

  • Castiglione S, Todeschini V, Franchin C, Torrigiani P, Gastaldi D, Cicatelli A, Rinaudo C, Berta G, Biondi S, Lingua G (2009) Clonal differences in survival capacity, copper and zinc accumulation, and correlation with leaf polyamine levels in poplar: a large-scale field trial on heavily polluted soil. Environm Pollut 157:2108–2117

    Article  CAS  Google Scholar 

  • Clemente R, Dickinson NM, Lepp NW (2008) Mobility of metals and metalloids in a multi-element contaminated soil 20 years after cessation of the pollution source activity. Environm Pollut 155:254–261

    Article  CAS  Google Scholar 

  • Conesa HM, Evangelou MWH, Robinson BH, Schulin R (2012) A critical view of current state of phytotechnologies to remediate soils: still a promising tool? Sci World J 2012:173829

    Article  CAS  Google Scholar 

  • Cosio C, Vollenweider P, Keller C (2006) Localization and effects of cadmium in leaves of a cadmium-tolerant willow (Salix viminalis L.) I. Macrolocalization and phytotoxic effects of cadmium. Environ Exp Bot 58:64–74

    Article  CAS  Google Scholar 

  • Čudić V, Stojiljković D, Jovović A (2016) Phytoremediation potential of wild plants growing on soil contaminated with heavy metals. Arh Hig Rada Toksiko 67:229–239

    Article  CAS  Google Scholar 

  • Domínguez MT, Madejón P, Marañón T, Murillo JM (2010) Afforestation of a trace-element polluted area in SW Spain: woody plant performance and trace element accumulation. Eur J For Res 129:47–59

    Article  CAS  Google Scholar 

  • Durand TC, Baillif P, Albéric P, Carpin S, Label P, Hausman J-F, Morabito D (2011) Cadmium and zinc are differentially distributed in Populus tremula x P. alba exposed to metal excess. Plant Biosyst 145:397–405

    Article  Google Scholar 

  • Evangelou MWH, Conesa HM, Robinson BH, Schulin R (2012a) Biomass production on trace element-contaminated land: a review. Environ Eng Sci 29:823–839

    Article  CAS  Google Scholar 

  • Evangelou MWH, Deram A, Gogos A, Studer B, Schulin R (2012b) Assessment of suitability of tree species for the production of biomass on trace element contaminated soils. J Hazard Mater 209:233–239

    Article  CAS  PubMed  Google Scholar 

  • Evangelou MWH, Robinson BH, Günthardt-Goerg MS, Schulin R (2013) Metal uptake and allocation in trees grown on contaminated land: implications for biomass production. Int J Phytoremediat 15:77–90

    Article  CAS  Google Scholar 

  • Evangelou MWH, Robinson BH, Schulin R (2015) Phytomanagement: phytoremediation and the production of biomass for economic revenue on contaminated land. In: Gill R, Gill SS, Lanza GR, Newman L (eds) Ansari AA. Springer International Publishing, Phytoremediation, pp 115–132

    Google Scholar 

  • Fahr M, Laplaze L, Bendaou N, Hocher V, El Mzibri M, Bogusz D, Smouni A (2013) Effect of lead on root growth. Front Plant Sci 4:175

    Article  PubMed  PubMed Central  Google Scholar 

  • Fifi U, Winiarski T, Emmanuel E (2013) Assessing the mobility of lead, copper and cadmium in a calcareous soil of Port-Au-Prince, Haiti. Int J Env Res Pub He 10:5830–5843

    Article  CAS  Google Scholar 

  • Fink S (1999) Pathological and regenerative plant anatomy. Gebrüder Bornträger, Berlin, pp 511–512

    Google Scholar 

  • French CJ, Dickinson NM, Putwain PD (2006) Woody biomass phytoremediation of contaminated brownfield land. Environm Pollut 14:387–395

    Article  CAS  Google Scholar 

  • Gandois L, Probst A (2012) Localisation and mobility of trace metal in silver fir needles. Chemosphere 87:204–210

    Article  CAS  PubMed  Google Scholar 

  • Greger M, Landberg T (1999) Use of willow in phytoextraction. Int J Phytoremediat 1-2:115–123

    Article  Google Scholar 

  • Grodzińska K, Szarek-Łukaszewska G (2009) Heavy metal vegetation in the Olkusz region (southern Poland) - preliminary studies. Polish Bot J 54:105–112

    Google Scholar 

  • Günthardt-Goerg MS, Vollenweider P (2007) Linking stress with macroscopic and microscopic leaf response in trees: new diagnostic perspectives. Environm Pollut 147:467–488

    Article  CAS  Google Scholar 

  • Hamilton JG, Farrell RE, Chen N, Feng RF, Reid J, Peak D (2016) Characterizing zinc speciation in soils from a smelter-affected boreal forest ecosystem. J Environ Qual 45:684–692

    Article  CAS  PubMed  Google Scholar 

  • Hermle S, Vollenweider P, Günthardt-Goerg MS, McQuattie CJ, Matyssek R (2007) Leaf responsiveness of Populus tremula and Salix viminalis to soil contaminated with heavy metals and acidic rainwater. Tree Physiol 27:1517–1531

    Article  CAS  PubMed  Google Scholar 

  • Holeksa J, Blonska A, Kompala-Baba A, Wozniak G, Kurek Szarek-Łukaszewska G, Grodzińska K, Zywiec M (2015) The vegetation of the Olkusz ore-bearing region. In: Godzik B (ed) Natural and historical values of the Olkusz ore-bearing region. W. Szafer Institute of Botany, Polish Academy of Sciences, Krakow, pp 105–128

    Google Scholar 

  • Huang S, Tu J, Liu H, Hua M, Liao Q, Feng J, Weng Z, Huang G (2009) Multivariate analysis of trace element concentrations in atmospheric deposition in the Yangtze River Delta, East China. Atmos Environ 43:5781–5790

    Article  CAS  Google Scholar 

  • Jensen JK, Holm PE, Nejrup J, Larsen MB, Borggaard OK (2009) The potential of willow for remediation of heavy metal polluted calcareous urban soils. Environm Pollut 157:931–937

    Article  CAS  Google Scholar 

  • Kandziora-Ciupa M, Ciepa R, Nadgórska-Socha A, Barczyk G (2016) Accumulation of heavy metals and antioxidant responses in Pinus sylvestris L. needles in polluted and non-polluted sites. Ecotoxicology 25:970–981

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kosiorek M, Modrzewska B, Wyskowski M (2016) Levels of selected trace elements in scots pine (Pinus sylvestris L.), silver birch (Betula pendula L.) and Norway maple (Acer platanoides L.) in an urbanized environment. Environ Monit assess 188:898

    Article  CAS  Google Scholar 

  • Küpper H, Andresen E (2016) Mechanisms of metal toxicity in plants. Metallomics 8:269–285

    Article  PubMed  Google Scholar 

  • de la Fuente C, Pardo T, Alburquerque JA, Martínez-Alcalà I, Bernal MP, Clemente R (2014) Assessment of native shrubs for stabilisation of a trace elements-polluted soil as the final phase of a restoration process. Agric Ecosyst Environ 196:103–111

    Article  CAS  Google Scholar 

  • Laureysens I, Blust R, De Temmerman L, Lemmens C, Ceulemans R (2004) Clonal variation in heavy metal accumulation and biomass production in a poplar coppice culture: I. Seasonal variation in leaf, wood and bark concentrations. Environm Pollut 131:485–494

    Article  CAS  Google Scholar 

  • Luster J, Menon M, Hermle S, Schulin R, Günthardt-Goerg MS, Nowack B (2008) Initial changes in refilled lysimeters built with metal polluted topsoil and acidic or calcareous subsoils as indicated by changes in drainage water composition. Water Air Soil Pol 8:163–176

    Article  CAS  Google Scholar 

  • Luwe MWF (1995) Distribution of nutrients and phytotoxic metal ions in the soil and two forest floor plant species of a beech (Fagus sylvatica L.) stand. Plant Soil 168-169:195–202

    Article  CAS  Google Scholar 

  • Maňkovská B, Godzik B, Badea O, Shparyk Y, Moravčík P (2004) Chemical and morphological characteristics of key tree species of the Carpathian Mountains. Environm Pollut 130:41–54

    Article  CAS  Google Scholar 

  • Menon M, Hermle S, Abbaspour KC, Günthardt-Goerg MS, Oswald SE, Schulin R (2005) Water regime of metal-contaminated soil under juvenile forest vegetation. Plant Soil 271:227–241

    Article  CAS  Google Scholar 

  • Menon M, Hermle S, Günthardt-Goerg MS, Schulin R (2007) Effects of heavy metal soil pollution and acid rain on growth and water use efficiency of a young model forest ecosystem. Plant Soil 297:171–183

    Article  CAS  Google Scholar 

  • Mertens J, Vervaeke P, Meers E, Tack FMG (2006) Seasonal changes of metals in willow (Salix sp.) stands for phytoremediation on dredged sediment. Environ Sci Technol 40:1962–1968

    Article  CAS  PubMed  Google Scholar 

  • Mertens J, Van Nevel L, De Schrijver A, Piesschaert F, Oosterbaan A, Tack FMG, Verheyen K (2007) Tree species effect on the redistribution of soil metals. Environm Pollut 149:173–181

    Article  CAS  Google Scholar 

  • Migeon A, Richaud P, Guinet F, Chalot M, Blaudez D (2009) Metal accumulation by woody species on contaminated sites in the north of France. Water Air Soil Pol 204:89–101

    Article  CAS  Google Scholar 

  • Misra V, Tiwari A, Shukla B, Seth CS (2009) Effects of soil amendments on the bioavailability of heavy metals from zinc mine tailings. Environ Monit Assess 155:467–475

    Article  CAS  PubMed  Google Scholar 

  • Mleczek M, Rutkowski P, Rissmann I, Kaczmarek Z, Golinski P, Szentner K, Strażyńska K, Stachowiak A (2010) Biomass productivity and phytoremediation potential of Salix alba and Salix viminalis. Biomass Bioenergy 34:1410–1418

    Article  CAS  Google Scholar 

  • Mleczek M, Kozlowska M, Kaczmarek Z, Chadzinikolau T, Golinski P (2012) Influence of ca/mg ratio on phytoextraction properties of Salix viminalis I. The effectiveness of Cd, Cu, Pb and Zn bioaccumulation and plant growth. Int J Phytoremediat 14:75–88

  • Mleczek M, Rutkowski P, Kaniuczak J, Szostek M, Budka A, Magdziak Z, Budzyńska S, Kuczyńska-Kippen M, Niedzielski P (2018) The significance of selected tree species age in their efficiency in elements phytoextraction from waste mixture. Int J Env Sci Techn. https://doi.org/10.1007/s13762-018-1996-0

  • Mudrák O, Doležal J, Frouz J (2016) Initial species composition predicts the progress in the spontaneous succession on post-mining sites. Ecol Eng 95:665–670

    Article  Google Scholar 

  • Nagajyoti PC, Lee KD, Sreekanth TVM (2010) Heavy metals, occurrence and toxicity for plants: a review. Environ Chem Lett 8(3):199–216

  • Nowack B, Rais D, Frey B, Menon M, Schulin R, Günthardt-Goerg MS, Luster J (2006) Influence of metal contamination on soil parameters in a lysimeter experiment designed to evaluate phytostabilization by afforestation. Forest, Snow and Landscape Research 80:201–211

    Google Scholar 

  • Nowack B, Schulin R, Luster J (2010) Metal fractionation in a contaminated soil after reforestation: Temporal changes versus spatial variability. Environm Pollut 158:3272–3278

  • Padmavathiamma PK, Li LY (2009) Phytoremediation of metal-contaminated soil in temperate and humid regions of British Columbia, Canada. Int J Phytoremediat 11:575–590

    Article  CAS  Google Scholar 

  • Panagos P, Van Liedekerke M, Yigini Y, Montanarella L (2013) Contaminated sites in Europe: review of the current situation based on data collected through a European network. J Environ Public Health 2013:158764

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pesonen J, Kuokkanen T, Rautio P, Lassi U (2017) Bioavailability of nutrients and harmful elements in ash fertilizers: effect of granulation. Biomass Bioenergy 100:92–97

    Article  CAS  Google Scholar 

  • Richardson JB, Donaldson EC, Kaste JM, Friedland AJ (2015) Forest floor lead, copper and zink concentrations across the northeastern unites states: synthesizing spatial and temporal responses. Sci Total Environ 505:851–859

    Article  CAS  PubMed  Google Scholar 

  • Robinson B, Schulin R, Nowack B, Roulier S, Menon M, Clothier B, Green S, Mills T (2006) Phytoremediation for the management of metal flux in contaminated sites. Forest Snow and Landscape Research 80:221–234

    Google Scholar 

  • Robinson BH, Bañuelos G, Conesa HM, Evangelou MWH, Schulin R (2009) The phytomanagement of trace elements in soil. Crit Rev Plant Sci 28:240–266

    Article  CAS  Google Scholar 

  • Unterbrunner R, Puschenreiter M, Sommer P, Wieshammer G, Tlustoš P, Zupan M, Wenzel WW (2007) Heavy metal accumulation in trees growing on contaminated sites in Central Europe. Environm Pollut 148:107–114

    Article  CAS  Google Scholar 

  • Van Slycken S, Witters N, Meiresonne L, Meers E, Ruttens A, Van Peteghem P, Weyens N, Tack FMG, Vangronsveld J (2013) Field evaluation of willow under short rotation coppice for phytomanagement of metal-polluted agricultural soils. Int J Phytoremediat 15:677–689

    Article  CAS  Google Scholar 

  • VBBo (2016) Verordnung über Belastungen des Bodens, Beschluss 1 Juli 1998 des Schweizer Bundesrates, Stand 1. Januar 2016

  • Vodyanitskii YN (2016) Standards for the contents of heavy metals in soils of some states. Ann Agrar Sci 14:257–263

    Article  Google Scholar 

  • Vollenweider P, Cosio C, Günthardt-Goerg MS, Keller C (2006) Localization and effects of cadmium in leaves of a cadmium-tolerant willow (Salix viminalis L.) part II microlocalization and cellular effects of cadmium. Environ Exp Bot 58:25–40

    Article  CAS  Google Scholar 

  • Vollenweider P, Menard T, Günthardt-Goerg MS (2011) Compartmentation of metals in foliage of Populus tremula grown on soils with mixed contamination. I. From the tree crown to leaf cell level. Environm Pollut 159:324–336

    Article  CAS  Google Scholar 

  • Yoon J, Cao X, Zhou Q, Ma LQ (2006) Accumulation of Pb, cu, and Zn in native plants growing on a contaminated Florida site. Sci Total Environ 368:456–464

    Article  CAS  PubMed  Google Scholar 

  • Zakrezewska M, Klimek B (2018) Trace element concentrations in tree and lichen collected along a metal pollution gradient near Olusz (southern Poland). Bull Environ Contam Toxicol 100:245–249

    Article  CAS  Google Scholar 

  • Zhao LYL, Schulin R, Weng LP, Nowack B (2007) Coupled mobilization of dissolved organic matter and metals (cu and Zn) in soil columns. Geochim Cosmochim Ac 71:3407–3418

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Peter Bleuler, Michael Lautenschläger and Ueli Bühlmann fort their help in carrying out the experiment and Daniel Pezzotta and his team of the WSL central lab for the elemental analyses.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Madeleine S. Günthardt-Goerg.

Additional information

Responsible Editor: Fangjie Zhao.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Günthardt-Goerg, M.S., Vollenweider, P., Hermle, S. et al. Growth and metal accumulation of young forest trees and understorey plants on contaminated topsoil: influence of subsoil and time. Plant Soil 437, 375–395 (2019). https://doi.org/10.1007/s11104-019-03986-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-019-03986-2

Keywords

Navigation