Skip to main content
Log in

A novel mechanistic interpretation of instantaneous temperature responses of leaf net photosynthesis

  • Original Article
  • Published:
Photosynthesis Research Aims and scope Submit manuscript

Abstract

Steady-state rates of leaf CO2 assimilation (A) in response to incubation temperature (T) are often symmetrical around an optimum temperature. A/T curves of C3 plants can thus be fitted to a modified Arrhenius equation, where the activation energy of A close to a low reference temperature is strongly correlated with the dynamic change of activation energy to increasing incubation temperature. We tested how [CO2] < current atmospheric levels and saturating light, or [CO2] at 800 µmol mol−1 and variable light affect parameters that describe A/T curves, and how these parameters are related to known properties of temperature-dependent thylakoid electron transport. Variation of light intensity and substomatal [CO2] had no influence on the symmetry of A/T curves, but significantly affected their breadth. Thermodynamic and kinetic (physiological) factors responsible for (i) the curvature in Arrhenius plots and (ii) the correlation between parameters of a modified Arrhenius equation are discussed. We argue that the shape of A/T curves cannot satisfactorily be explained via classical concepts assuming temperature-dependent shifts between rate-limiting processes. Instead the present results indicate that any given A/T curve appears to reflect a distinct flux mode, set by the balance between linear and cyclic electron transport, and emerging from the anabolic demand for ATP relative to that for NADPH.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

A ref :

Net photosynthesis at the reference temperature

A opt :

Peak rates of net photosynthesis at optimum temperature

T ref :

Low reference temperature (294 K in the present study)

T opt :

Optimum temperature

E oA :

Activation energy of A at some (unspecified) incubation temperature

E o(Ref A ):

Activation energy of A infinitesimally close to (or ‘at’) the reference temperature

δ A :

Dynamic response of E oA to changes in incubation temperature

ETR:

Linear electron transport rate

E o(RefETR):

Activation energy of ETR at the reference temperature

δ ETR :

Dynamic response of E oETR to changes in incubation temperature

c a :

Applied CO2 concentration during measurements

c i :

Intercellular [CO2], Φ PSII, photochemical efficiency of PS II of light-adapted leaves (‘operating efficiency’)

CEF:

Cyclic electron flow around PS I

References

  • Baker NR, Harbinson J, Kramer (2007) Determining the limitations and regulations of photosynthetic energy transduction in leaves. Plant Cell Environ 30:107–125

    Article  Google Scholar 

  • Barber J, Ford RC, Mitchell RAC, Millner PA (1984) Chloroplast thylakoid membrane fluidity and its sensitivity to temperature. Planta 161:375–380

    Article  CAS  PubMed  Google Scholar 

  • Battaglia M, Beadle C, Loughhead S (1996) Photosynthesis temperature response of Eucalyptus globulus and Eucalyptus nitens. Tree Physiol 16:81–89

    Article  PubMed  Google Scholar 

  • Berry JA, Björkman O (1980) Photosynthetic response and adaptation to temperature in higher plants. Annu Rev Plant Physiol 31:491–543

    Article  Google Scholar 

  • Buchanan BB, Balmer (2005) Redox regulation: a broadening horizon. Annu Rev Plant Biol 56:187–220

    Article  CAS  PubMed  Google Scholar 

  • Buchanan BB, Gruissem W, Jones RL (2000) Biochemistry and molecular biology of plants. American Society of Plant Physiologists, Rockville, MD

    Google Scholar 

  • Clarke JE, Johnson GN (2001) In vivo temperature dependence of cyclic and pseudocyclic electron transport in barley. Planta 212:808–816

    Article  CAS  PubMed  Google Scholar 

  • DalCorso G, Pesaresi P, Masiero S, Aseeva E, Schünemann D, Finazzi G, Joliot P, Barbato R, Leister D (2008) A complex containing PGRL1 and PGR5 is involved in the switch between linear and cyclic electron flow in Arabidopsis. Cell 132:273–285

    Article  CAS  PubMed  Google Scholar 

  • Endo T, Kawase D, Sato F (2005) Stromal over-reduction by high-light stress as measured by decreases in P700 oxidation by far-red light and its physiological relevance. Plant Cell Physiol 46:775–781

    Article  CAS  PubMed  Google Scholar 

  • Eyring H (1935) The activated complex and the absolute rate of chemical reactions. Chem Rev 17:65–77

    Article  CAS  Google Scholar 

  • Farquhar GD, von Caemmerer S, Berry JA (1980) A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. Planta 149:78–90

    Article  CAS  PubMed  Google Scholar 

  • Flexas J, Diaz-Espejo A (2015) Interspecific differences in temperature response of mesophyll conductance: food for thought on its origin and regulation. Plant Cell Environ 38:625–628

    Article  CAS  PubMed  Google Scholar 

  • Genty B, Briantais J-M, Baker NR (1989) The relationship between quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. Biochim Biophys Acta 990:87–92

    Article  CAS  Google Scholar 

  • Gunderson CA, O’Hara KH, Campion CM, Walker AW, Edwards NT (2010) Thermal plasticity of photosynthesis: the role of acclimation in forest responses to a warming climate. Glob Change Biol 16:2272–2286

    Article  Google Scholar 

  • Haehnel W (1984) Photosynthetic electron transport in higher plants. Annu Rev Plant Physiol Plant Mol Biol 35:659–693

    Article  CAS  Google Scholar 

  • Hald S, Nandha B, Gallois P, Johnson GN (2008) Feedback regulation of photosynthetic electron transport by NADP(H) redox poise. Biochim Biophys Acta 1777:433–440

    Article  CAS  PubMed  Google Scholar 

  • Han MH (1972) Non-linear Arrhenius plots in temperature-dependent kinetic studies of enzyme reactions. I. Single transition processes. J Theor Biol 35:543–568

    Article  CAS  PubMed  Google Scholar 

  • Harley PC, Weber JA, Gates (1985) Interactive effects of light, leaf temperature, CO2 and O2 on photosynthesis in soybean. Planta 165:249–263

    Article  CAS  PubMed  Google Scholar 

  • Heber U (2002) Irrungen, Wirrungen? The Mehler reaction in relation to cyclic electron transport in C3 plants. Photosynth Res 73:223–231

    Article  CAS  PubMed  Google Scholar 

  • Heber U, Walker D (1992) Concerning a dual function of coupled cyclic electron-transport in leaves. Plant Physiol 100:1621–1626

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heber U, Gerst U, Krieger A, Neimanis S, Kobayashi Y (1995) Coupled cyclic electron transport in intact chloroplasts and leaves of C3 plants: does it exist? If so, what is its function? Photosynth Res 46:269–275

    Article  CAS  PubMed  Google Scholar 

  • Hertle AP, Blunder T, Wunder T, Pesaresi P, Pribil M, Armbruster U, Leister D (2013) PGRL 1 is the elusive ferredoxin-plastoquinone-reductase in photosynthetic cyclic electron flow. Mol Cell 49:511–523

    Article  CAS  PubMed  Google Scholar 

  • Horton P, Ruban RG, Walters RG (1996) Regulation of light harvesting in green plants. Annu Rev Plant Physiol Plant Mol Biol 47:655–684

    Article  CAS  PubMed  Google Scholar 

  • Hulett JR (1964) Deviations from the Arrhenius equation. Quart Rev 3:227–242

    Article  Google Scholar 

  • Hüve K, Bichele I, Rasulov B, Niinemets Ü (2011) When it is too hot for photosynthesis: heat-induced instability of photosynthesis in relation to respiratory burst, cell permeability changes and H2O2 formation. Plant Cell Environ 34:113–126

    Article  PubMed  Google Scholar 

  • Johnson GN (2011) Physiology of PSI cyclic electron transport in higher plants. Biochim Biophys Acta 1807:384–389

    Article  CAS  PubMed  Google Scholar 

  • Joliot P, Joliot A (2006) Cyclic electron flow in C3 plants. Biochim Biophys Acta 1757:362–368

    Article  CAS  PubMed  Google Scholar 

  • June T, Evans JR, Farquhar GD (2004) A simple new equation for the reversible temperature dependence of photosynthetic electron transport: a study on soybean leaf. Funct Plant Biol 31:275–283

    Article  CAS  Google Scholar 

  • Kruse J, Rennenberg H, Adams MA (2011) Steps towards a mechanistic understanding of respiratory temperature responses. New Phytol 189:659–677

    Article  CAS  PubMed  Google Scholar 

  • Kruse J, Turnbull T, Adams MA (2012) Disentangling respiratory acclimation and adaptation to growth temperature by Eucalyptus spp. New Phytol 195:149–163

    Article  CAS  PubMed  Google Scholar 

  • Kruse J, Adams MA, Kadinov G, Arab L, Kreuzwieser J, Alfarraj S, Schulze W, Rennenberg H (2016) Characterization of photosynthetic acclimation in Phoenix dactylifera by a modified Arrhenius equation originally developed for leaf respiration. Photosyn Res (re-submitted)

  • Kubo K (1985) A view on the break in the Arrhenius plot. J Theor Biol 115:551–569

    Article  Google Scholar 

  • Laisk A, Eichelmann H, Oja V, Peterson RB (2005) Control of cytochrome b(6)f at low and high light intensity and the cyclic electron transport in leaves. Biochim Biopys Acta 1708:79–90

    Article  CAS  Google Scholar 

  • Lehtimäki N, Koskela MM, Dahlström KM, Pakula E, Lintala M, Scholz M, Hippler M, Hanke GT, Rokka A, Battchikova N, Salminen TA, Mulo P (2014) Posttranslational modifications of Ferredoxin-NADP+ oxidoreductase in Arabidopsis chloroplasts. Plant Physiol 166:1764–1776

    Article  PubMed  PubMed Central  Google Scholar 

  • Lin Y-S, Medlyn BE, Ellsworth DS (2012) Temperature responses of leaf net photosynthesis: the role of component processes. Tree Physiol 32:219–231

    Article  CAS  PubMed  Google Scholar 

  • Liu L, Guo Q-X (2000) Isokinetic relationship, isoequilibrium relationship, and enthalpy-entropy compensation. Chem Rev 101:673–695

    Article  Google Scholar 

  • Ludlow MM, Wilson GL (1971) Photosynthesis of tropical pasture plants. I. Illuminance, carbon dioxide concentration, leaf temperature, and leaf-air vapor pressure difference. Aust J Biol Sci 24:449–470

    Google Scholar 

  • Ma B, Kumar S, Tsai C-J, Hu Z, Nussinov R (2000) Transition-state ensemble in enzyme catalysis: possibility, reality, or necessity? J Theor Biol 203:383–397

    Article  CAS  PubMed  Google Scholar 

  • Malkin R, Niyogi K (2000) Photosynthesis. In: Buchanan BB, Gruissem W, Jones RL (ed) Biochemistry and molecular biology of plants, pp 508–566

  • Marcus RA, Sutin N (1985) Electron transfers in chemistry and biology. Biochim Biophys Acta 811:265–322

    Article  CAS  Google Scholar 

  • Mawson BT, Cummins WR (1989) Thermal acclimation of photosynthetic electron transport activity by thylakoids of Saxifraga cernua. Plant Physiol 89:325–332

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Medlyn BE, Dreyer E, Ellsworth D, Harley PC, Kirschbaum MUF, Le Roux X, Montpied P, Strassmeyer J, Walcroft A, Wang K, Loustau D (2002) Temperature response of parameters of a biochemically based model of photosynthesis. II. A review of experimental data. Plant Cell Environ 25:1167–1179

    Article  CAS  Google Scholar 

  • Mitchell RAC, Barber J (1986) Adaptation of photosynthetic electron-transport rate to growth temperature in pea. Planta 169:429–436

    Article  CAS  PubMed  Google Scholar 

  • Moss DA, Bendall DS (1984) Cyclic electron transport in chloroplasts. The Q-cycle and the site of action of antimycin. Biochim Biophys Acta 767:389–395

    Article  CAS  Google Scholar 

  • Munekage Y, Hashimoto M, Miyake C, Tomizawa K, Endo T, Tasaka M, Shikanai T (2004) Cyclic electron transport around photosystem I is essential for photosynthesis. Nature 429:579–582

    Article  CAS  PubMed  Google Scholar 

  • Niinemets Ü, Oja V, Kull O (1999) Shape of leaf photosynthetic electron transport versus temperature response curve is not constant along canopy light gradients in temperate deciduous trees. Plant Cell Environ 22:1497–1514

    Article  CAS  Google Scholar 

  • Noguchi K, Yamori W, Hikosaka K, Terashima I (2015) Homeostasis of the temperature sensitivity of respiration over a range of growth temperatures indicated by a modified Arrhenius model. New Phytol. doi:10.1111/nph.13339

    PubMed  Google Scholar 

  • Oberhuber W, Edwards GE (1993) Temperature dependence of the linkage of quantum yield of photosystem II to CO2 fixation in C4 and C3 plants. Plant Physiol 101:507–512

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ott T, Clarke J, Birks K, Johnson G (1999) Regulation of the photosynthetic electron transport chain. Planta 209:250–258

    Article  CAS  PubMed  Google Scholar 

  • Raghavendra AS, Padmasree K (2003) Beneficial interactions of mitochondrial metabolism with photosynthetic carbon assimilation. Trends Plant Sci 8:546–553

    Article  CAS  PubMed  Google Scholar 

  • Raison JK, Berry JA, Armond PA, Pike CS (1980) Membrane properties in relation to the adaptation of plants to temperature stress. In: Turner NC, Kramer PJ (eds) Adaptation of plants to water and high temperature stress. Wiley, New York, pp 261–273

    Google Scholar 

  • Sage RF (2013) Photorespiratory compensation: a driver for biological diversity. Plant Biol 15:624–638

    Article  CAS  PubMed  Google Scholar 

  • Schreiber U (2004) Pulse-amplitude-modulation (PAM) fluorometry and saturation pulse method: an overview. Adv Photosyn Respir 19:279–319

    Article  CAS  Google Scholar 

  • Seemann JR, Berry JA, Downton WJS (1984) Photosynthetic response and adaptation to high temperature in desert plants. Plant Physiol 75:364–368

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shikanai T (2007) Cyclic electron transport around photosystem I: genetic approaches. Annu Rev Plant Biol 58:199–217

    Article  CAS  PubMed  Google Scholar 

  • Siedow JA, Day DA (2000) Respiration and photorespiration. In: Buchanan BB, Gruissem W, Jones RL (eds) Biochemistry and molecular biology of plants. American Society of Plant Physiologists, Rockville, pp 676–728

    Google Scholar 

  • Silvius JR, McElhaney RN (1980) Membrane lipid physical state and modulation of the Na+, Mg2+-ATPase activity in Acholeplasma laidlawii B. Proc Natl Acad Sci USA 77:1255–1259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Silvius JR, McElhaney RN (1981) Non-linear Arrhenius plots and the analysis of reaction and motional rates in biological membranes. J Theor Biol 88:135–152

    Article  CAS  PubMed  Google Scholar 

  • Smith NG, Dukes JS (2013) Plant respiration and photosynthesis in global-scale models: incorporating acclimation to temperature and CO2. Glob Change Biol 15:308–314

    Google Scholar 

  • Sturtevant JM, Mateo PL (1978) Proposed temperature-dependent conformational transition in D-amino acid oxidase: a differential scanning microcalorimetric study. Proc Natl Acad Sci USA 75:2584–2587

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tenhunen JD, Yocum CS, Gates DM (1976) Development of a photosynthesis model with an emphasis on ecological applications. I. Theory. Oecologia 26:89–100

    Article  Google Scholar 

  • Thornley JHM, Johnson RL (1990) Plant and crop modeling. A mathematical approach to plant and crop physiology. Oxford Science Publications, Oxford

    Google Scholar 

  • von Caemmerer S, Evans JR (2015) Temperature responses of mesophyll conductance differ greatly between species. Plant Cell Environ 38:629–637

    Article  Google Scholar 

  • Way DA, Yamori W (2014) Thermal acclimation of photosynthesis: on the importance of adjusting our definitions and accounting for thermal acclimation of respiration. Photosynth Res 119:89–100

    Article  CAS  PubMed  Google Scholar 

  • Yamasaki T, Yamakawa T, Yamane Y, Koike H, Satoh K, Katoh S (2002) Temperature acclimation of photosynthesis and related changes in photosystem II electron transport in winter wheat. Plant Physiol 128:1087–1097

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamori W, Noguchi K, Terashima I (2005) Temperature acclimation of photosynthesis in spinach leaves: analysis of photosynthetic components and temperature dependencies of photosynthetic partial reactions. Plant Cell Environ 28:536–547

    Article  CAS  Google Scholar 

  • Yamori W, Noguchi K, Kashino Y, Terashima I (2008) The role of electron transport in determining the temperature dependence of the photosynthetic rate in spinach leaves grown at contrasting temperatures. Plant Cell Physiol 49:583–591

    Article  CAS  PubMed  Google Scholar 

  • Yoshida K, Terashima I, Noguchi K (2007) Up-regulation of mitochondrial alternative oxidase concomitant with chloroplast over-reduction by excess light. Plant Cell Physiology 48:606–614

    Article  CAS  PubMed  Google Scholar 

  • Zhang R, Sharkey TD (2009) Photosynthetic electron transport and proton flux under moderate heat stress. Photosynth Res 100:29–43

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The research of this study was funded by the King Saud University, Saudi Arabia (PRG-1436-24), and the University of Sydney, Australia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jörg Kruse.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 130 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kruse, J., Alfarraj, S., Rennenberg, H. et al. A novel mechanistic interpretation of instantaneous temperature responses of leaf net photosynthesis. Photosynth Res 129, 43–58 (2016). https://doi.org/10.1007/s11120-016-0262-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11120-016-0262-x

Keywords

Navigation