Skip to main content
Log in

Numerical Calculation of Effective Diffusion in Unsaturated Porous Media by the TRT Lattice Boltzmann Method

  • Published:
Transport in Porous Media Aims and scope Submit manuscript

Abstract

Numerical models that solve transport of pollutants at the macroscopic scale in unsaturated porous media need the effective diffusion dependence on saturation as an input. We conducted numerical computations at the pore scale in order to obtain the effective diffusion curve as a function of saturation for an academic sphere packing porous medium and for a real porous medium where pore structure knowledge was obtained through X-ray tomography. The computations were performed using a combination of lattice Boltzmann models based on two relaxation time (TRT) scheme. The first stage of the calculations consisted in recovering the water spatial distribution into the pore structure for several fixed saturations using a phase separation TRT lattice Boltzmann model. Then, we performed diffusion computation of a non-reactive solute in the connected water structure using a diffusion TRT lattice Boltzmann model. Finally, the effective diffusion for each selected saturation value was estimated through inversion of a macroscopic classical analytical solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  • Appert, C., Zaleski, S.: Lattice-gas with a liquid–gas transition. Phys. Rev. Lett. 64, 1–4 (1990)

    Article  Google Scholar 

  • Archie, G.E.: The electrical resistivity log as an aid in determining some reservoir characteristics. Pet. Trans. AIME 146, 54–62 (1942)

    Article  Google Scholar 

  • Balberg, I.: Excluded-volume explanation of Archie’s law. Phys. Rev. B 33, 3618–3620 (1986)

    Article  Google Scholar 

  • Bauer, D., Youssef, S., Han, M., Bekri, S., Rosenberg, E., Fleury, M., Vizika, O.: From computed microtomography images to resistivity index calculations of heterogeneous carbonates using a dual-porosity pore-network approach: influence of percolation on the electrical transport properties. Phys. Rev. E 84(011133), 1–12 (2011)

    Google Scholar 

  • Bear, J., Bachmat, Y.: Introduction to Modeling of Transport Phenomena in Porous Media. kluwer Academic Publishers, Dordrecht (1991)

    Google Scholar 

  • Bear, J., Rubinstein, B., Fel, L.: Capillary pressure curve for liquid menisci in a cubic assembly of spherical particles below irreducible saturation. Transp. Porous Med. 89(1), 63–73 (2011)

    Article  Google Scholar 

  • Bekri, S., Adler, P.M.: Dispersion in multiphase flow through porous media. Int. J. Multiph. Flow 28, 665–697 (2002)

    Article  Google Scholar 

  • Bertei, A., Nucci, B., Nicolella, C.: Effective transport properties in random packings of spheres and agglomerates. Chem. Eng. Trans. 32, 1531–1536 (2013)

    Google Scholar 

  • Boudreau, B.P.: The diffusive tortuosity of fine-grained unlithified sediments. Geochim. Cosmochim. Acta 60(16), 3139–3142 (1996)

    Article  Google Scholar 

  • Chau, J.F., Or, D., Sukop, M.C.: Simulation of gaseous diffusion in partially saturated porous media under variable gravity with lattice Boltzmann methods. Water Resour. Res. 41, W08410 (2005). doi:10.1029/2004WR003821

    Google Scholar 

  • de Marsily, G.: Quantitative Hydrogeology. Academic Press, San Diego (1986)

    Google Scholar 

  • Epstein, N.: On tortuosity and the tortuosity factor in flow and diffusion through porous media. Chem. Eng. Sci. 44(3), 777–779 (1989)

    Article  Google Scholar 

  • Friedman, S.P.: Soil properties influencing apparent electrical conductivity: a review. Comput. Electron. Agric. 46, 45–70 (2005)

    Article  Google Scholar 

  • Genty, A., Pot, V.: Numerical simulation of 3D liquid–gas distribution in porous media by a two-phase TRT lattice Boltzmann method. Transp. Porous Med. 96, 271–294 (2013)

    Article  Google Scholar 

  • Ghanbarian, B., Hunt, A.G., Ewing, R.P., Sahimi, M.: Tortuosity in porous media: a critical review. Soil Sci. Soc. Am. J. 77, 1461–1477 (2013)

    Article  Google Scholar 

  • Ginzburg, I., d’Humières, D.: Multireflection boundary conditions for lattice Boltzmann models. Phys. Rev. E 68(6), 066614 (2003)

    Article  Google Scholar 

  • Ginzburg, I.: Equilibrium-type and link-type lattice Boltzmann models for generic advection and anisotropic-dispersion equation. Adv. Water Resour. 28, 1171–1195 (2005)

    Article  Google Scholar 

  • Ginzburg, I., Verhaeghe, F., d’Humières, D.: Study of simple hydrodynamics solutions with the two-relaxation-times lattice Boltzmann scheme. Commun. Comput. Phys. 3, 519–581 (2008)

    Google Scholar 

  • Guillon, V., Fleury, M., Bauer, D., Neel, M.C.: Superdispersion in homogeneous unsaturated porous media using NMR propagators. Phys. Rev. E 87(0430007), 1–10 (2013)

    Article  Google Scholar 

  • Hamamoto, S., Moldrup, P., Kawamoto, K., Komatsu, T.: Excluded-volume expansion of Archie’s law for gas and solute diffusivities and electrical and thermal conductivities in variably saturated porous media. Water Resour. Res. 46, W06514 (2010). doi:10.1029/2009WR008424

    Google Scholar 

  • Hu, Q., Wang, J.S.Y.: Aqueous-phase diffusion in unsaturated geologic media: a review. Crit. Rev. Environ. Sci. Technol. 33(3), 275–297 (2003)

    Article  Google Scholar 

  • Hu, Q., Kneafsey, T.J., Roberts, J.J., Tomutsa, L., Wang, J.S.Y.: Characterizing unsaturated diffusion in porous tuff gravel. Vadoze Zone J. 3, 1425–1438 (2004)

    Article  Google Scholar 

  • Jeong, N., Choi, D.H., Lin, C.-L.: Estimation of thermal and mass diffusivity in a porous medium of complex structure using a lattice Boltzmann method. Int. J. Heat Mass Transf. 51, 3913–3923 (2008)

    Article  Google Scholar 

  • Jones, S.B., Or, D., Bingham, J.E.: Gas diffusion measurement and modeling in coarse-textured porous media. Vadose Zone J. 2, 602–610 (2003)

    Article  Google Scholar 

  • Kemmitt, S.J.K., Lnyon, C.V., Waite, I.S., Wen, Q., Addiscott, T.M., Bird, N.R.A., O’Donnell, A.G., Brookes, P.C.: Mineralization of native soil organic matter is not regulated by the size, activity or composition of the soil microbial biomass—a new perspective. Soil Biol. Biochem. 40, 61–73 (2008)

    Article  Google Scholar 

  • Lim, P.C., Barbour, S.L., Fredlund, D.G.: The influence of degree of saturation on the coefficient of aqueous diffusion. Can. Geotech. J. 35, 811–827 (1998)

    Article  Google Scholar 

  • Martys, N.S.: Diffusion in partially-saturated porous materials. Mater. Struct. 32, 555–562 (1999)

    Article  Google Scholar 

  • Martys, N.S., Chen, H.: Simulation of multicomponent fluids in complex three-dimensional geometries by the lattice Boltzmann method. Phys. Rev. E 53(1), 743–750 (1996)

    Article  Google Scholar 

  • Maxwell, J.C.: A Treatise on Electricity and Magnetism, Chap. IX, vol. I. Claredon Press, Oxford (1873)

    Google Scholar 

  • Mercado-Mendoza, H., Lorente, S., Bourbon, X.: The diffusion coefficient of ionic species through unsaturated materials. Transp. Porous Med. 96, 469–481 (2013)

    Article  Google Scholar 

  • Moldrup, P., Olesen, T., Yoshikawa, S., Komatsu, T., Rolston, D.E.: Three-porosity model for predicting the gas diffusion coefficient in unsaturated soil. Soil Sci. Soc. Am. J. 68, 750–759 (2004)

    Article  Google Scholar 

  • Nakashima, Y., Nakano, T.: Steady-state local diffusive fluxes in porous geo-materials obtained by pore scale simulations. Transp. Porous Med. 93, 657–673 (2012)

    Article  Google Scholar 

  • Pot, V., Hammou, H., Elyeznasmi, N., Ginzburg, I.: Role of soil heterogeneities onto pesticide fate: a pore-scale study with lattice Boltzmann. In: Proceedings of the 1st International Conference and Exploratory Workshop on Soil Architexture and Physico-chemical Functions “CESAR”, 30 Nov–2 Dec, 2010. Research Centre Foulum, Tjele. ISBN 87 91949-59-9

  • Raiskinmäki, P., Koponen, A., Merikoski, J., Timonen, J.: Spreading dynamics of three-dimensional droplets by the lattice-Boltzmann method. Comput. Mater. Sci. 18, 7–12 (2000)

    Article  Google Scholar 

  • Rose, W.: Volumes and surface areas of pendular rings. J. Appl. Phys. 29(4), 687–691 (1958)

    Article  Google Scholar 

  • Savoye, S., Page, J., Puente, C., Imbert, C., Coelho, D.: New experimental approach for studying diffusion through an intact and unsaturated medium: a case study with Callovo–Oxfordian argilite. Environ. Sci. Technol. 44(10), 3698–3704 (2010)

    Article  Google Scholar 

  • Shan, X., Chen, H.: Lattice Boltzmann model for simulating flows with multiple phases and components. Phys. Rev. E 47(3), 1815–1820 (1993)

    Article  Google Scholar 

  • Shan, X., Chen, H.: Simulation of nonideal gases and liquid–gas phase transitions by the lattice Boltzmann equation. Phys. Rev. E 49(4), 2941–2948 (1994)

    Article  Google Scholar 

  • Shen, L., Chen, Z.: Critical review of the impact of tortuosity on diffusion. Chem. Eng. Sci. 62, 3748–3755 (2007)

    Article  Google Scholar 

  • van Brakel, J., Heertjes, P.M.: Analysis of diffusion in macroporous media in terms of a porosity, a tortuosity and a constrictivity factor. Int. J. Heat Mass Transf. 17, 1093–1103 (1974)

    Article  Google Scholar 

  • Voutilainen, M., Sardini, P., Siitari-Kauppi, M., Kekaäläinen, P., Aho, V., yllys, M., Timonen, J.: Diffusion of tracer in altered tonalite: experiments and simulations with heterogeneous distribution of porosity. Transp. Porous Med. 96, 319–336 (2013)

    Article  Google Scholar 

  • Xuan, Y.M., Zhao, K., Li, Q.: Investigation on mass diffusion process in porous media based on lattice Boltzmann method. Int. J. Heat Mass Transf. 46, 1039–1051 (2010)

    Article  Google Scholar 

  • Yanici, S., Arns, J.-Y., Cinar, Y., Pinczewski, W.V., Arns, C.H.: Percolation effects of grains contacts in partially saturated sandstones: deviation from Archie’s law. Transp. Porous Med. 96, 457–467 (2013)

    Article  Google Scholar 

  • Zaretskiy, Y., Geiger, S., Sorbie, K., Frster, M.: Efficient flow and transport simulations in reconstructed 3D pore geometries. Adv. Water Resour. 33, 1508–1516 (2010)

    Article  Google Scholar 

  • Zhang, M., Ye, G., van Breugel, K.: Modeling of ionic diffusivity in non-saturated cement-based materials using lattice Boltzmann method. Cem. Concr. Res. 42(11), 1524–1533 (2012)

    Article  Google Scholar 

  • Zhang, M., He, Y., Ye, G., Lange, D.A., van Breugel, K.: Computational investigation on mass diffusivity in Portland cement paste based on X-ray computed microtomography (\(\mu \)CT) image. Constr. Build. Mater. 27, 472–481 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alain Genty.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Genty, A., Pot, V. Numerical Calculation of Effective Diffusion in Unsaturated Porous Media by the TRT Lattice Boltzmann Method. Transp Porous Med 105, 391–410 (2014). https://doi.org/10.1007/s11242-014-0374-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11242-014-0374-8

Keywords

Navigation