Skip to main content
Log in

Demethylation of Dimethylarsinic Acid and Arsenobetaine in Different Organic Soils

  • Published:
Water, Air, and Soil Pollution Aims and scope Submit manuscript

Abstract

Methylation and demethylation of arsenic may change substantially the toxicity and mobility of arsenic in soils. Little is known about demethylation of organic arsenic species in organic soils. We incubated dimethylarsinic acid (DMA) and arsenobetaine (AsB) in soils and aqueous soil extracts from a forest floor and fen, in order to investigate demethylation processes. Incubations were conducted at 5°C in the dark under oxic or anoxic conditions. Arsenobetaine demethylated rapidly in all soil extracts with half-lives of 3.6–12 days, estimated from first order kinetic. Demethylation of DMA was relatively slow with half-lives of 187 and 46 days in the forest floor extracts and oxic fen extracts, respectively. In comparison, DMA was stable for 100 days in anoxic fen extracts. The apparent half-lives were much shorter in soils for DMA (1.3–12.6 days) and AsB (0.5–1.9 days) than in soil extracts, suggesting also irreversible AsB and DMA adsorption to soils beside demethylation. An unknown arsenic species and DMA were detected as metabolites of AsB demethylation. The results indicate rapid demethylation of AsB probably via the pathway AsB → Dimethylarsenoylacetate → DMA, followed up by slow demethylation of DMA → monomethylarsonic acid → inorganic As species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Adriano, D. C. (2001) Trace elements in the terrestrial environment. Berlin Heidelberg New York: Springer.

    Google Scholar 

  • Bhumbla, D. K., & Keefer, R. F. (1994). Arsenic mobilisation and bioavailability in soil. In J. O. Nriagu (Ed.), Arsenic in the environment, part I: Cycling and characterization (pp. 51–82). New York: Wiley.

    Google Scholar 

  • Chiu, V. Q., & Hering, J. G. (2000). Arsenic adsorption and oxidation at manganite surfaces. 1. method for simultaneous determination of adsorbed and dissolved arsenic species. Environmental Science and Technology, 34, 2029–2034.

    Article  CAS  Google Scholar 

  • Cullen, W. R., & Reimer, K. J. (1989). Arsenic speciation in the environment. Chemical Reviews, 89, 713–764.

    Article  CAS  Google Scholar 

  • Devesa, V., Loos, A., Súñer, M. A., Vélez, D., Feria, A., Martínez, A., et al. (2005). Transformation of organoarsenical species by the microflora of freshwater crayfish. Journal of Agricultural and Food Chemistry, 53, 10297–10305.

    Article  CAS  Google Scholar 

  • Francesconi, K. A., & Kuehnelt, D. (2004). Determination of arsenic species: A critical review of methods and applications, 2000–2003. Analyst, 129, 373–395.

    Article  CAS  Google Scholar 

  • Francesconi, K., Visoottiviseth, P., Sridokchan, W., & Gössler, W. (2002). Arsenic species in an arsenic hyperaccumulating fern, Pityrogramma calomelanos: A potential phytoremediator of arsenic-contaminated soils. Science of the Total Environment, 284, 27–35.

    Article  CAS  Google Scholar 

  • Gao, S., & Burau, R. G. (1997). Environmental factors affecting rates of arsenic evolution from and mineralization of arsenicals in soil. Journal of Environmental Quality, 26, 753–763.

    Article  CAS  Google Scholar 

  • Geiszinger, A., Gössler, W., & Kosmus, W. (2002). Organoarsenic compounds in plants and soil on top of an ore vein. Applied Organometallic Chemistry, 16, 245–249.

    Article  CAS  Google Scholar 

  • Geiszinger, A., Gössler, W., Kühnelt, D., Francesconi, K., & Kosmus, W. (1998). Determination of arsenic compounds in earthworms. Environmental Science and Technology, 32, 2238–2243.

    Article  CAS  Google Scholar 

  • Hanaoka, K., Nakamura, O., Ohno, H., Tagawa, S., & Kaise, T. (1995a). Degradation of arsenobetaine to inorganic arsenic by bacteria in seawater. Hydrobiologia, 316, 75–80.

    Article  CAS  Google Scholar 

  • Hanaoka, K., Tagawa, S., & Kaise, T. (1992). The degradation of arsenobetaine to inorganic arsenic by sedimentary microorganisms. Hydrobiologia, 1, 623–628.

    Article  Google Scholar 

  • Hanaoka, K., Uchida, K., Tagawa, S., & Kaise, T. (1995b). Uptake and degradation of arsenobetaine by the microorganisms occurring in sediments. Applied Organometallic Chemistry, 9, 573–579.

    Article  CAS  Google Scholar 

  • Hanaoka, K., Ueno, K., Tagawa, S., & Kaise, T. (1989). Degradation of arsenobetaine by microorganisms associated with marine macro algae, Monostroma nitidum and Hizikia fusiforme. Comparative biochemistry and physiology B, Biochemistry & molecular biology, 94, 379–382.

    Article  Google Scholar 

  • Hanaoka, K., Yamamoto, H., Kawashima, K., Tagawa, S., & Kaise, T. (1988). Ubiquity of arsenobetaine in marine animals and degradation of arsenobetaine by sedimentary microorganisms. Applied Organometallic Chemistry, 2, 371–376.

    Article  CAS  Google Scholar 

  • Hasegawa, H. (1997). The behavior of trivalent and pentavalent methylarsenicals in Lake Biwa. Applied Organometallic Chemistry, 11, 305–311.

    Article  CAS  Google Scholar 

  • Hatzinger, P. B., & Alexander, M. (1995). Effect of aging of chemicals in soil on their biodegradability and extractability. Environmental Science and Technology, 29, 537–545.

    CAS  Google Scholar 

  • Helgesen, H., & Larsen, E. H. (1998). Bioavailability and speciation of arsenic in carrots grown in contaminated soil. Analyst, 123, 791–796.

    Article  CAS  Google Scholar 

  • Hollibaugh, J. T., Carini, S., Gürleyük, H., Jellison, R., Joye, S. B., LeCleir, G., et al. (2005). Arsenic speciation in Mono Lake, California: Response to seasonal stratification and anoxia. Geochimica et Cosmochimica Acta, 69, 1925–1937.

    Article  CAS  Google Scholar 

  • Huang, J. H., & Matzner, E. (2006). Dynamics of organic and inorganic arsenic in the solution phase of an acidic fen in Germany. Geochimica et Cosmochimica Acta, 70, 2023–2033.

    Article  CAS  Google Scholar 

  • Jenkins, R. O., Ritchie, A. W., Edmonds, J. S., Gössler, W., Molnat, N., Kühnelt, D., et al. (2003). Bacterial degradation of arsenobetaine via dimethylarsinoylacetate. Archives of Microbiology, 180, 142–150.

    Article  CAS  Google Scholar 

  • Kaise, T., Sakurai, T., Saitoh, T., Matsubara, C., Takada-Oikawa, N., & Hanaoka, K. (1998). Biotransformation of arsenobetaine to trimethylarsine oxide by marine microorganisms in a gill of clam Meretrix lusoria. Chemosphere, 37, 443–449.

    Article  CAS  Google Scholar 

  • Khokiattiwong, S., Gössler, W., Pedersen, S. N., Cox, R., & Francesconi, K. A. (2001). Dimethylarsinoylacetate from microbial demethylation of arsenobetaine in seawater. Applied Organometallic Chemistry, 15, 481–489.

    Article  CAS  Google Scholar 

  • Lafferty, B. J,. & Loeppert, R. H. (2005). Methyl arsenic adsorption and desorption behavior on iron oxides. Environmental Science and Technology, 39, 2120–2127.

    Article  CAS  Google Scholar 

  • Mandal, B. K., Ogra, Y., & Suzuki, K. T. (2001). Identification of dimethylarsinous and monomethylarsonous acids in human urine of the arsenic-affected areas in West Bengal, India. Chemical Research in Toxicology, 14, 371–378.

    Article  CAS  Google Scholar 

  • Mandal, B. K., & Suzuki, K. T. (2002). Arsenic round the world: A review. Talanta, 58, 201–235.

    Article  CAS  Google Scholar 

  • Matschullat, J. (2000). Arsenic in the geosphere − a review. Science of the Total Environment, 249, 297–312.

    Article  CAS  Google Scholar 

  • Mukai, H., Ambe, Y., Muku, T., Takeshita, K., & Fukuma, T. (1986). Seasonal variation of methylarsenic compounds in airborne particulate matter. Nature, 324, 239–240.

    Article  CAS  Google Scholar 

  • Okina, M., Yoshida, K., Kuroda, K., Wanibuchi, H., Fukushima, S., & Endo, G. (2004). Determination of trivalent methylated arsenicals in rat urine by liquid chromatography-inductively coupled plasma mass spectrometry after solvent extraction. Journal of Chromatography B, 799, 209–215.

    Article  CAS  Google Scholar 

  • Pongratz, R. (1998). Arsenic speciation in environmental samples of contaminated soil. Science of the Total Environment, 224, 133–141.

    Article  CAS  Google Scholar 

  • Riis, V., Lorbeer, H., & Babel, W. (1998). Extraction of microorganisms from soil: Evaluation of the effeiciency by counting methods and activity measurements. Soil Biology & Biochemistry, 30, 1573–1581.

    Article  CAS  Google Scholar 

  • Sadiq, M. (1997). Arsenic chemistry in soils: an overview of thermodynamic predictions and field observations. Water Soil Air Pollution, 93, 117–136.

    CAS  Google Scholar 

  • Sierra-Alvarez, R., Yenal, U., Field, J. A., Kopplin, M., Gandolfi, A. J., & Garbarino, J. R. (2006). Anaerobic biotransformation of organoarsenical pesticides monomethylarsonic acid and dimethylarsinic acid. Journal of Agricultural and Food Chemistry, 54, 3959–3966.

    Article  CAS  Google Scholar 

  • Sohrin, Y., Matsui, M., Kawashima, M., Hojo, M., & Hasegawa, H. (1997). Arsenic biogeochemistry affected by Eutrophication in Lake Biwa, Japan. Environmental Science and Technology, 31, 2712–2720.

    Article  CAS  Google Scholar 

  • Styblo, M., Del Razo, L. M., & Vega L. (2000). Comparative toxicity of trivalent and pentavalent inorganic and methylated arsenicals in rat and human cell. Archives of Toxicology, 74, 289–299.

    Article  CAS  Google Scholar 

  • Takamatsu, T., Aoki, H., & Yoshida, T. (1982). Determination of arsenate, arsenite, monomethylarsenate and dimethylarsinate in soil polluted with arsenic. Soil Science, 133, 239–246.

    Article  CAS  Google Scholar 

  • Tlustoš, P., Gössler, W., Száková, J., & Balík, J. (2002). Arsenic compounds in leaves and roots of radish grown in soil treated by arsenite, arsenate and dimethylarsinic acid. Applied Organometallic Chemistry, 16, 216–220.

    Article  CAS  Google Scholar 

  • Turpeinen R, Pantsar-Kallio, M., Haggblom, M., & Kairesalo, T. (1999). Influence of microbes on the mobilization, toxicity and biomethylation of arsenic in soil. Science of the Total Environment, 236, 173–180.

    Article  CAS  Google Scholar 

  • Wilkin, R. T., Wallschläger, D., & Ford, R. G. (2003). Speciation of arsenic in sulfidic waters. Geochemical Transactions, 4, 1−7.

    Article  Google Scholar 

  • Woolson, E. A., Aharonson, N., & Iadevaia, R. (1982). Application of the high-performance liquid chromatography-flameless atomic absorption method to the study of alkyl arsenical herbicide metabolism in soil. Journal of Agricultural and Food Chemistry, 30, 580–584.

    Article  CAS  Google Scholar 

  • Woolson, E. A., & Kearney, P. C. (1973). Persistence and reactions of 14C-cacodylic acid in soils. Environmental Science and Technology, 7, 47–50.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Dr Gunter Ilgen for analytical support and Uwe Hell for field work. Financial support came from Deutsche Forschungsgemeinschaft (DFG).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jen-How Huang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, JH., Scherr, F. & Matzner, E. Demethylation of Dimethylarsinic Acid and Arsenobetaine in Different Organic Soils. Water Air Soil Pollut 182, 31–41 (2007). https://doi.org/10.1007/s11270-006-9318-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11270-006-9318-4

Keywords

Navigation