Skip to main content

Advertisement

Log in

Invertebrates Minimize Accumulation of Metals and Metalloids in Contaminated Environments

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Many studies were conducted measuring the lethal concentration of pollutants by using a contaminated solution or polluted sediments. Considering the impact of polluted food on mortality and uptake quantity of invertebrate shredders in batch cultures, little is known about, e.g. uranium and cadmium. Consequently, we investigated in situ the impact of metal and metalloid polluted food and water on Gammarus pulex L. under nature-like conditions. In contrast to other publications, a very low mortality rate of the invertebrates was found. Furthermore, fixation of elements by G. pulex was shown to be low compared to initial concentrations. Fixation of non essential metals and metalloids is shown to take place mainly on the surface of the invertebrates. This is deduced from easy desorption of a relevant amount of fixed metals and metalloids. It is concluded that the accumulation of metals and metalloids in situ under nature-like conditions within the food web via invertebrate shredders is very low. The invertebrates seem to minimize the uptake of non essential elements in the presence of nutrient-rich food even in habitats with higher contamination levels. Hence, invertebrates seem to be adapted to higher contamination levels in their favourable habitats.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Abel, T., & Barlocher, F. (1988). Uptake of cadmium by Gammarus fossarum (Amphipoda) from food and water. Journal of Applied Ecology, 25, 223–231.

    Article  CAS  Google Scholar 

  • Alves, L. C., Borgmann, U., & Dixon, D. G. (2009). Kinetics of uranium uptake in soft water and the effect of body size, bioaccumulation and toxicity to Hyalella azteca. Environmental Pollution, 157, 2239–2247.

    Article  CAS  Google Scholar 

  • Bartlett, A. J., Borgmann, U., Dixon, D. G., Batchelor, S. P., & Maguire, R. J. (2004). Accumulation of tributyltin in Hyalella azteca as an indicator of chronic toxicity: Survival, growth, and reproduction. Environmental Toxicology and Chemistry, 23, 2878–2888.

    Article  Google Scholar 

  • Bergey, L. L., & Weis, J. S. (2007). Molting as a mechanism of depuration of metals in the fiddler crab, Uca pugnax. Marine Environmental Research, 64, 556–562.

    Article  CAS  Google Scholar 

  • Borgmann, U., Couillard, Y., Doyle, P., & Dixon, D. G. (2005). Toxicity of sixty-three metals and metalloids to Hyalella azteca at two levels of water hardness. Environmental Toxicology and Chemistry, 24, 641–652.

    Article  CAS  Google Scholar 

  • Bulgheresi, S., Schabussova, I., Chen, T., Mullin, N. P., Maizels, R. M., & Ott, J. A. (2006). A new C-type lectin similar to the human immunoreceptor DC-SIGN mediates symbiont acquisition by a marine nematode. Applied and Environmental Microbiology, 72, 2950–2956.

    Article  CAS  Google Scholar 

  • Calamari, D., Marchetti, R., & Vailati, G. (1980). Influence of water hardness on cadmium toxicity to Salmo gairdneri Rich. Water Research, 14, 1421–1426.

    Article  CAS  Google Scholar 

  • Crawford, R. J., Mainwaring, D. E., & Harding, I. H. (1996). ‘Adsorption and coprecipitation of heavy metals from ammoniacal solutions using hydrous metal oxides’, 4th Australia/Japan Symposium (pp. 167–179). Sorrento: Elsevier Science.

    Google Scholar 

  • Dallinger, R. (1995). Mechanism of metal incorporation into cells. In M. P. Cajaraville (Ed.), Cell biology in environmental toxicology (pp. 135–154). Bilbao: Springer.

    Google Scholar 

  • De Schamphelaere, K. A. C., Canli, M., Van Lierde, V., Forrez, I., Vanhaecke, F., & Janssen, C. R. (2004). Reproductive toxicity of dietary zinc to Daphnia magna. Aquatic Toxicology, 70, 233–244.

    Article  Google Scholar 

  • DIN. (1997). EN 1484 Anleitung zur Bestimmung des gesamten organischen Kohlenstoffs (TOC) und des gelösten organischen Kohlenstoffs (p. 14). Berlin: Deutsches Institut für Normung.

    Google Scholar 

  • DIN. (2004). EN ISO 17294-2 Wasserbeschaffenheit-Anwendung der induktiv gekoppelten Plasma-Massenspektrometrie (ICP-MS)-Teil 2: Bestimmung von 62 Elementen (ISO 17294-2:2003), Deutsche Fassung EN ISO 17294-2:2004 (p. 24). Berlin: Deutsches Institut für Normung.

    Google Scholar 

  • DIN-EN-13805. (2002). Lebensmittel-Bestimmung von Elementspuren–Druckaufschluss, Deutsche Fassung (p. 11). Berlin: Deutsches Institut für Normung.

    Google Scholar 

  • DIN-ISO-10694. (1995). Soil quality—Determination of organic and total carbon after dry combustion (elementary analysis) (ISO 10694:1995) (p. 12). Berlin: Deutsches Institut für Normung.

    Google Scholar 

  • D’Souza, S. F., Sar, P., Kazy, S. K., & Kubal, B. S. (2006). Uranium sorption by Pseudomonas biomass immobilized in radiation polymerized polyacrylamide bio-beads. Journal of Environmental Science Health Part A-Toxic/Hazard. Substances Environmental Engineering, 41, 487–500.

    Article  Google Scholar 

  • Gopalakrishnan, S., Thilagam, H., & Raja, P. V. (2007). Toxicity of heavy metals on embryogenesis and larvae of the marine sedentary polychaete Hydroides elegans. Archives of Environmental Contamination and Toxicology, 52, 171–178.

    Article  CAS  Google Scholar 

  • Guo, X. Y., Zhang, S. Z., Shan, X. Q., Luo, L., Pei, Z. G., Zhu, Y. G., et al. (2006). Characterization of Pb, Cu, and Cd adsorption on particulate organic matter in soil. Environmental Toxicology and Chemistry, 25, 2366–2373.

    Article  CAS  Google Scholar 

  • Hopkin, S. P. (1989). Ecophysiology of metals in terrestrial invertebrates (p. 384). Elsevier Applied Science: London.

    Google Scholar 

  • Jakubick, A. T., & Kahnt, R. (2002). Remediation oriented use of conceptual site models at WISMUT GmbH: Rehabilitation of the Trünzig tailings management area. In B. Merkel, B. Planer-Friedrich, & C. Wolkersdorfer (Eds.), Uranium in the aquatic environment (pp. 9–24). Berlin: Springer.

    Google Scholar 

  • Karimi, R., & Folt, C. L. (2006). Beyond macronutrients: element variability and multielement stoichiometry in freshwater invertebrates. Ecological Letters, 9, 1273–1283.

    Article  Google Scholar 

  • Li, A. O. Y., & Dudgeon, D. (2008). Food resources of shredders and other benthic macroinvertebrates in relation to shading conditions in tropical Hong Kong streams. Freshwater Biology, 53, 2011–2025.

    Article  Google Scholar 

  • Maltby, L., & Crane, M. (1994). Responses of Gammarus pulex (Amphipoda, Crustacea) to metalliferous effluents—Identification of toxic components and the importance of interpopulation variation. Environmental Pollution, 84, 45–52.

    Article  CAS  Google Scholar 

  • Milani, D., Reynoldson, T. B., Borgmann, U., & Kolasa, J. (2003). The relative sensitivity of four benthic invertebrates to metals in spiked-sediment exposures and application to contaminated field sediment. Environmental Toxicology and Chemistry, 22, 845–854.

    Article  CAS  Google Scholar 

  • Moriarty, M. M., Koch, I., Gordon, R. A., & Reimer, K. J. (2009). Arsenic speciation of terrestrial invertebrates. Environmental Science & Technology, 43, 4818–4823.

    Article  CAS  Google Scholar 

  • Pagenkopf, G. K. (1983). Gill surface interaction model for trace-metal toxicity to fishes—Role of complexation, pH, and water hardness. Environmental Science & Technology, 17, 342–347.

    Article  CAS  Google Scholar 

  • Purchase, D., Scholes, L. N. L., Revitt, D. M., & Shutes, R. B. E. (2009). Effects of temperature on metal tolerance and the accumulation of Zn and Pb by metal-tolerant fungi isolated from urban runoff treatment wetlands. Journal of Applied Microbiology, 106, 1163–1174.

    Article  CAS  Google Scholar 

  • Robertson, E. L., & Liber, K. (2007). Bioassays with caged Hyalella azteca to determine in situ toxicity downstream of two Saskatchewan, Canada, uranium operations. Environmental Toxicology and Chemistry, 26, 2345–2355.

    Article  CAS  Google Scholar 

  • Robinson, C. T., Gessner, M. O., & Ward, J. V. (1998). Leaf breakdown and associated macroinvertebrates in alpine glacial streams. Freshwater Biology, 40, 215–228.

    Article  Google Scholar 

  • Ross, J. H., & Dudel, E. G. (2008). Uranium loads and accumulation in a mine water contaminated wetland. In N. Rapantova & Z. Hrkal (Eds.), Mine water and the environment (pp. 225–228). Ostrava: Technical University of Ostrava.

    Google Scholar 

  • Santoro, A., Blo, G., Mastrolitti, S., & Fagioli, F. (2009). Bioaccumulation of heavy metals by aquatic macroinvertebrates along the basento river in the South of Italy. Water, Air, and Soil Pollution, 201, 19–31.

    Article  CAS  Google Scholar 

  • Schaller, J., Brackhage, C., & Dudel, E. G. (2009). Limited transfer of uranium to higher trophic levels by Gammarus pulex L. in contaminated environments. Journal of Environmental Monitoring, 11, 1629–1633.

    Article  CAS  Google Scholar 

  • Schaller, J., Weiske, A., Mkandawire, M., & Dudel, E. G. (2010). Invertebrates control metals and arsenic sequestration as ecosystem engineers. Chemosphere, 79, 169–173.

    Article  CAS  Google Scholar 

  • Shin, M., Barrington, S. F., Marshall, W. D., & Kim, J. W. (2006). Kinetics of metal desorption from soil with nonionic micelle-solubilized ligands. Journal of Environmental Engineering and Science, 5, 163–173.

    Article  CAS  Google Scholar 

  • Sridhar, K. R., Barlocher, F., Wennrich, R., Krauss, G. J., & Krauss, G. (2008). Fungal biomass and diversity in sediments and on leaf litter in heavy metal contaminated waters of Central Germany. Fundamental and Applied Limnology, 171, 63–74.

    Article  CAS  Google Scholar 

  • Tiegs, S. D., Peter, F. D., Robinson, C. T., Uehlinger, U., & Gessner, M. O. (2008). Leaf decomposition and invertebrate colonization responses to manipulated litter quantity in streams. Journal of the North American Benthological Society, 27, 321–331.

    Article  Google Scholar 

  • Wang, X. L., & Zauke, G. P. (2004). Size-dependent bioaccumulation of metals in the amphipod Gammarus zaddachi (Sexton 1912) from the River Hunte (Germany) and its relationship to the permeable body surface area. Hydrobiologia, 515, 11–28.

    Article  CAS  Google Scholar 

  • Watanabe, K., Monaghan, M. T., Takemon, Y., & Omura, T. (2008). Biodilution of heavy metals in a stream macroinvertebrate food web: Evidence from stable isotope analysis. The Science of the Total Environment, 394, 57–67.

    Article  CAS  Google Scholar 

  • Winkelmann, C., Worischka, S., Koop, J. H. E., & Benndorf, J. (2007). Predation effects of benthivorous fish on grazing and shredding macroinvertebrates in a detritus-based stream food web. Limnologica, 37, 121–128.

    Google Scholar 

  • Woelfl, S., Mages, M., Óvári, M., & Geller, W. (2006). Determination of heavy metals in macrozoobenthos from the rivers Tisza and Szamos by total reflection X-ray fluorescence spectrometry. Spectrochimica Acta. Part B: Atomic Spectroscopy, 61, 1153–1157.

    Article  Google Scholar 

  • Wright, P. A. (1995). Nitrogen-excretion—3 end-products, many physiological roles. The Journal of Experimental Biology, 198, 273–281.

    CAS  Google Scholar 

  • Zhou, J. L., Huang, P. L., & Lin, R. G. (1998). Sorption and desorption of Cu and Cd by macroalgae and microalgae. Environmental Pollution, 101, 67–75.

    Article  CAS  Google Scholar 

Download references

Acknowledgement

We are grateful to Mr. Arndt Weiske for the analyses with ICP-MS, Ms. Karin Klinzmann for the laboratory assistance and Dr. Martin Mkandawire for the element-species calculation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joerg Schaller.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schaller, J., Brackhage, C. & Dudel, E.G. Invertebrates Minimize Accumulation of Metals and Metalloids in Contaminated Environments. Water Air Soil Pollut 218, 227–233 (2011). https://doi.org/10.1007/s11270-010-0637-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11270-010-0637-0

Keywords

Navigation