Skip to main content
Log in

Plant Availability and Uptake of Lead, Zinc, and Cadmium in Soils Contaminated with Anti-corrosion Paint from Pylons in Comparison to Heavy Metal Contaminated Urban Soils

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Red lead (Pb3O4) has been used extensively in the past as an anti-corrosion paint for the protection of steel constructions. Prominent examples being some of the 200,000 high-voltage pylons in Germany which have been treated with red lead anti-corrosion paints until about 1970. Through weathering and maintenance work, paint compounds and particles are deposited on the soils beneath these constructions. In the present study, six such “pylon soils” were investigated in order to characterize the plant availability and plant uptake of Pb, Cd, and Zn. For comparison, three urban soils with similar levels of heavy metal contamination were included. One phase extractions with 1 M NH4NO3, sequential extractions (seven steps), and extractions at different soil pH were used to evaluate the heavy metal binding forms in the soil and availability to plants. Greenhouse experiments were conducted to determine heavy metal uptake by Lolium multiflorum and Lactuca sativa var. crispa in untreated and limed red lead paint contaminated soils. Concentrations of Pb and Zn in the pylon soils were elevated with maximum values of 783 mg Pb kg−1 and 635 Zn mg kg−1 while the soil Cd content was similar to nearby reference soils. The pylon soils were characterized by exceptionally high proportions of NH4NO3-extractable Pb reaching up to 17% of total Pb. Even if the relatively low pH of the soils is considered (pH 4.3–4.9), this appears to be a specific feature of the red lead contamination since similarly contaminated urban soils have to be acidified to pH 2.5 to achieve a similarly high Pb extractability. The Pb content in L. multiflorum shoots reached maximum values of 73 mg kg−1 after a cultivation time of 4 weeks in pylon soil. Lime amendment reduced the plant uptake of Pb and Zn significantly by up to 91%. But L. sativa var. crispa cultivated on soils limed to neutral pH still contained critical Pb concentrations (up to 0.6 mg kg−1 fresh weight). Possible mechanisms for the exceptionally high plant availability of soil Pb derived from red lead paint are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Adie, G. U., & Osibanjo, O. (2010). Accumulation of lead and cadmium by four tropical forage weeds found in the premises of an automobile battery manufacturing company in Nigeria. Toxicological and Environmental Chemistry, 92(1), 39–49.

    Article  CAS  Google Scholar 

  • Alvarenga, P., Goncalves, A. P., Fernandes, R. M., De Varennes, A., Vallini, G., Duarte, E., et al. (2009). Organic residues as immobilizing agents in aided phytostabilization: (I) effects on soil chemical characteristics. Chemosphere, 74(10), 1292–1300.

    Article  CAS  Google Scholar 

  • Andersson, B. I., & Ekwall, G. (1966). Importance of surface preparation and climatic conditions for the durability of anticorrosive paint systems on structural steel. FATIPEC Congress, 8, 45–57.

    CAS  Google Scholar 

  • Appleby, A. J., & Mayne, J. E. O. (1976). The relative protection afforded by red lead dispersed in linseed oil, tung oil, oiticica oil and a long oil alkyd varnish. Journal of the Oil and Colour Chemists’ Association, 59(2), 69–71.

    CAS  Google Scholar 

  • BBodSchV (1999). Bundes-Bodenschutz- und Altlastenverordnung, Anhang 2. Bundesministerium der Justiz Berlin, p. 52.

  • Binstock, D. A., Gutknecht, W. F., & McWilliams, A. C. (2009). Lead in soil—an examination of paired XRF analysis performed in the field and laboratory ICP-AES results. International Journal of Soil, Sediment and Water, 2(2), pp. Article 1.

    Google Scholar 

  • BNetzA (2007). In press release; Scheer, H.: Energiewende ist eine große Chance für verbesserten Landschaftsschutz. Europäische Vereinigung für Erneuerbare Energien e.V. Retrieved May 5, 2010 from http://eurosolar.de/de/index2.php?option=com_content&do_pdf=1&id=797.

  • Bogden, J. D., & Louria, D. B. (1975). Soil contamination from lead in paint chips. Bulletin of Environmental Contamination and Toxicology, 14(3), 289–294.

    Article  CAS  Google Scholar 

  • Bose, A., Vashistha, K., & O’Loughlin, B. J. (1983). Azarcón por empacho—another cause of lead toxicity. Pediatrics, 72(1), 106–108.

    CAS  Google Scholar 

  • Bose, S., Chandrayan, S., Rai, V., Bhattacharyya, A. K., & Ramana, A. L. (2008). Translocation of metals in pea plants grown on various amendment of electroplating industrial sludge. Bioresource Technology, 99(10), 4467–4475.

    Article  CAS  Google Scholar 

  • Brock, T., Groteklaes, M., & Mischke, P. (2000). European coatings handbook (p. 150). Hannover: Curt R. Vincentz.

    Google Scholar 

  • Brown, S., Chaney, R., Hallfrisch, J., Ryan, J. A., & Berti, W. R. (2004). In situ soil treatments to reduce the phyto- and bioavailability of lead, zinc, and cadmium. Journal of Environmental Quality, 33(2), 522–531.

    Article  CAS  Google Scholar 

  • Brown, S., Christensen, B., Lombi, E., McLaughlin, M., McGrath, S., Colpaert, J., et al. (2005). An inter-laboratory study to test the ability of amendments to reduce the availability of Cd, Pb, and Zn in situ. Environmental Pollution, 138(1), 34–45.

    Article  CAS  Google Scholar 

  • Cao, X., Ma, L. Q., Chen, M., Hardison, J. D. W., & Harris, W. G. (2003). Weathering of lead bullets and their environmental effects at outdoor shooting ranges. Journal of Environmental Quality, 32(2), 526–534.

    Article  CAS  Google Scholar 

  • Chamberlain, A. C. (1983). Fallout of lead and uptake by crops. Atmospheric Environment, 17(4), 677–692.

    Article  CAS  Google Scholar 

  • Chater, T. W. J. (1941). Red lead and red lead paint. Journal of the Oil and Colour Chemists’ Association, 24, 144–149.

    CAS  Google Scholar 

  • Cohan, A. J., Edwards, R. D., Kleinman, M. T., & Dabdub, D. (2009). Potential for atmospheric-driven lead paint degradation in the south coast air basin of California. Environmental Science and Technology, 43(23), 8881–8887.

    Article  CAS  Google Scholar 

  • Cornelis, R., Caruso, J., Crews, H., & Heumann, K. (2005). Handbook of elemental speciation II—species in the environment, food, medicine and occupational health (p. 254). Chichester: Wiley.

    Book  Google Scholar 

  • De Vries, W., Roemkens, P. F. A. M., & Schuetze, G. (2007). Critical soil concentrations of cadmium, lead and mercury in view of health effects on humans and animals. Reviews of Environmental Contamination and Toxicology, 191, 91–130.

    Article  Google Scholar 

  • EC (2005). Commission directive 2005/87/EC. Amending annex I to directive 2002/32/EC of the European parliament and the council on undesirable substances in animal feed as regards lead, fluorine and cadmium. Official Journal of the European Union, Brussels, L318/19, 1–6.

    Google Scholar 

  • EU (2006). Commission regulation (EC) No 1881. Setting maximum levels for certain contaminants in foodstuffs. Official Journal of the European Union, Brussels, L 364/5, 1–20.

    Google Scholar 

  • Fava, G., Fratesi, R., Ruello, M. L., & Sani, D. (2002). Soil zinc contamination from corrosion of galvanized structures. Science of the Total Environment, 18(3–4), 223–232.

    CAS  Google Scholar 

  • Fayek, M. K., & Leciejewicz, J. (1965). Neutron-diffraction study of Pb3O4. Zeitschrift für Anorganische und Allgemeine Chemie, 336, 104–109.

    Article  CAS  Google Scholar 

  • Fraser, D. A., & Fairhall, L. T. (1959). Laboratory study of the solubility of red lead paint in water. Public Health Reports, 74(6), 501–510.

    Article  CAS  Google Scholar 

  • Furman, O., Strawn, D. G., Heinz, G. H., & Williams, B. (2006). Risk assessment test for lead bioaccessibility to waterfowl in mine-impact soils. Journal of Environmental Quality, 35(2), 450–458.

    Article  CAS  Google Scholar 

  • Gadepalle, V. P., Ouki, S. K., Van Herwijnen, R., & Hutchings, T. (2007). Immobilization of heavy metals in soil using natural and waste materials for vegetation establishment on contaminated sites. Soil & Sediment Contamination, 16(2), 233–251.

    Article  CAS  Google Scholar 

  • Gaweda, M., & Capecka, E. (1995). Effect of substrate pH on the accumulation of lead in radish (Raphanus sativus L. subvar. radicula) and spinach (Spinacia oleracea L.). Acta Physiologiae Plantarum, 17(4), 333–340.

    CAS  Google Scholar 

  • Gooch, J. W. (1993). Lead-based paint handbook (p. 64). New York: Plenum.

    Google Scholar 

  • Gross, S. T. (1943). The crystal structure of Pb3O4. Journal of the American Chemical Society, 65(6), 1107–1110.

    Article  CAS  Google Scholar 

  • Grunwaldt, H. S., & Heigener, H. (1974). Bleikontamination von Pflanzen und Böden durch beim Airless-Spritzen einer Brücke versprühte Mennige. Landwirtschaftliche Forschung, 30(1), 121–130.

    CAS  Google Scholar 

  • Gryschko, R., Kuhnle, R., Terytze, K., Breuer, J., & Stahr, K. (2005). Soil extraction of readily soluble heavy metals and As with 1 M NH4NO3-solution. Evaluation of DIN 19730. Journal of Soil and Sediments, 5(2), 101–106.

    Article  CAS  Google Scholar 

  • Haynes, W. M. (2010). CRC handbook of chemistry and physics (Vol. 91, pp. 4–71). London: CRC.

    Google Scholar 

  • Hebberling, H. (1956). Werden die Bleifarben im Rostschutz “Entbehrlich”? Werkstoffe und Korrosion, 7(8–9), 433–435.

    CAS  Google Scholar 

  • Hope, B. K. (1995). A review of models for estimating terrestrial ecological receptor exposure to chemical contaminants. Chemosphere, 30(12), 2267–2287.

    Article  CAS  Google Scholar 

  • Hund-Rinke, K., & Kördel, W. (2003). Underlying issues in bioaccessibility and bioavailability: experimental methods. Ecotoxicology and Environmental Safety, 56(1), 52–62.

    Article  CAS  Google Scholar 

  • IFUA Projekt GmbH (2008). Bodenbelastungen im Umkreis von Höchstspannungsmasten. BEW-Forum Altlasten/Bodenschutz, Duisburg (unpublished report).

  • Intawongse, M., & Dean, J. R. (2006). Uptake of heavy metals by vegetable plants grown on contaminated soil and their bioavailability in the human gastrointestinal tract. Food Additives and Contaminants, 23(1), 36–48.

    Article  CAS  Google Scholar 

  • ISO 10694 (1995). Soil quality—determination of organic and total carbon after dry combustion (elementary analysis). International Organization of Standardization, Genf

  • ISO 13878 (1998). Soil quality—determination of total nitrogen content by dry combustion (“elemental analysis”). International Organization of Standardization, Genf

  • ISO 19730 (2008). Soil quality—extraction of trace elements from soil using ammonium nitrate solution. International Organization of Standardization, Genf

  • Jones, R. (1983). Zinc and cadmium in lettuce and radish grown in soils collected near electrical transmission (hydro) towers. Water, Air, and Soil Pollution, 19(4), 389–395.

    CAS  Google Scholar 

  • Jones, R., & Burgess, M. S. E. (1984). Zinc and cadmium in soils and plants near electrical transmission (hydro) towers. Environmental Science and Technology, 18(10), 731–734.

    Article  CAS  Google Scholar 

  • Jones, R., Prohaska, K. A., & Burgess, M. S. E. (1987). Zinc and cadmium in corn plants growing near electrical transmission towers. Water, Air, and Soil Pollution, 37, 355–363.

    Article  Google Scholar 

  • Kákosy, T., Hudák, A., & Náray, M. (1996). Lead intoxication epidemic caused by ingestion of contaminated ground paprika. Clinical Toxicology, 34(5), 507–511.

    Article  Google Scholar 

  • Kalembasa, S., & Godlewska, A. (2009). The influence of organic materials and liming on contents of some heavy metals in annual ryegrass. Fresenius Environmental Bulletin, 18(7a), 1214–1218.

    CAS  Google Scholar 

  • Karamanos, R. E., Bettany, J. R., & Stewart, J. W. B. (1976). The uptake of native and applied lead by alfalfa and bromegrass from soil. Canadian Journal of Soil Science, 56, 485–494.

    Article  Google Scholar 

  • Khan, M. J., & Jones, D. L. (2009). Effect of composts, lime and diammonium phosphate on the phytoavailability of heavy metals in a copper mine tailing soil. Pedosphere, 19(5), 631–641.

    Article  CAS  Google Scholar 

  • Kracke, W., Dietl, D., & Sansoni, B. (1971). Bestimmung des Bleigehalts von Fleisch- und Organproben in Rindern. Gesellschaft für Strahlen- und Umweltforschung mbH München, pp. 171–175.

  • Kwiatkowska, J. (2006). The effect of organic amendments on the phytoavailability of heavy metals in polluted soil. Ecohydrology and Hydrobiology, 6(1–4), 181–186.

    CAS  Google Scholar 

  • Lin, G. Z., Peng, R. F., Chen, Q., Wu, Z. G., & Du, L. (2009). Lead in housing paints: an exposure source still not taken seriously for children lead poisoning in china. Environmental Research, 109(1), 1–5.

    Article  CAS  Google Scholar 

  • Lindqvist, S. Å., & Vannerberg, N. G. (1974). Corrosion-inhibiting properties of red lead—I. Pigment suspensions in aqueous solutions. Werkstoffe und Korrosion, 25(10), 740–748.

    Article  CAS  Google Scholar 

  • Lombi, E., Zhao, F. J., Wieshammer, G., Zhang, G., & McGrath, S. P. (2002). In situ fixation of metals in soils using bauxite residue: biological effects. Environmental Pollution, 118, 445–452.

    Article  CAS  Google Scholar 

  • Maharachpong, N., Geater, A., & Chongsuvivatwong, V. (2006). Environmental and childhood lead contamination in the proximity of boat-repair yards in southern Thailand—I: pattern and factors related to soil and household dust lead levels. Environmental Research, 101(3), 294–303.

    Article  CAS  Google Scholar 

  • Marschner, H. (1995). Mineral nutrition of higher plants (pp. 358–362). London: Academic.

    Google Scholar 

  • Marschner, B., Welge, P., Hack, A., Wittsiepe, J., & Wilhelm, M. (2006). Comparison of soil Pb in vitro bioaccessibility and in vivo bioavailability with Pb pools from a sequential soil extraction. Environmental Science and Technology, 40(8), 2812–2818.

    Article  CAS  Google Scholar 

  • Marti, J., & Stettler, A. (2001). Korrosionsschutz und Umwelt. Umweltwissenschaften und Schadstoff-Forschung, 13(3), 185–188.

    Article  CAS  Google Scholar 

  • Martinez, C. E., & Motto, H. L. (2000). Solubility of lead, zinc and copper added to mineral soils. Environmental Pollution, 107(1), 153–158.

    Article  CAS  Google Scholar 

  • Mattina, M. J. I., Lannucci-Berger, W., Musante, C., & White, J. C. (2003). Concurrent plant uptake of heavy metals and persistent organic pollutants from soil. Environmental Pollution, 124(3), 375–378.

    Article  CAS  Google Scholar 

  • Mayne, J. E. O. (1946). Protective action of lead compounds. Journal of the Society of Chemical Industry, 65(7), 196–204.

    Article  CAS  Google Scholar 

  • Nduka, J. K. C., Orisakwe, O. E., & Maduawguna, C. A. (2008). Lead levels in paint flakes from buildings in Nigeria: a preliminary study. Toxicology and Industrial Health, 24(8), 539–542.

    Article  CAS  Google Scholar 

  • Odai, S. N., Mensah, E., Sipitey, D., Ryo, S., & Awuah, E. (2008). Heavy metals uptake by vegetables cultivated on urban waste dumpsites: case study of Kumasi, Ghana. Research Journal of Environmental Toxicology, 2(2), 92–99.

    Article  CAS  Google Scholar 

  • Peralta-Videa, J. R., Lopez, M. L., Narayan, M., Saupe, G., & Gardea-Torresdey, J. (2009). The biochemistry of environmental heavy metal uptake by plants: implications for the food chain. The International Journal of Biochemistry & Cell Biology, 41(8–9), 1665–1677.

    Article  CAS  Google Scholar 

  • Plater, M. J., De Silva, B., Gelbrich, T., Hursthouse, M. B., Higgitt, C. L., & Saunders, D. R. (2003). The characterisation of lead fatty acid soaps in ‘protrusions’ in aged traditional oil paint. Polyhedron, 22(24), 3171–3179.

    Article  CAS  Google Scholar 

  • Pueyo, M., López-Sánchez, J. F., & Rauret, G. (2004). Assessment of CaCl2, NaNO3 and NH4NO3 extraction procedures for the study of Cd, Cu, Pb and Zn extractability in contaminated soils. Analytica Chimica Acta, 504(2), 217–226.

    Article  CAS  Google Scholar 

  • Reddy, C. N., & Patrick, W. H., Jr. (1977). Effect of redox potential and pH on the uptake of cadmium and lead by rice plants. Journal of Environmental Quality, 6(3), 259–262.

    Article  CAS  Google Scholar 

  • Rizzi, L., Petruzzelli, G., Poggio, G., & Vigna Guidi, G. (2004). Soil physical changes and plant availability of Zn and Pb in a treatability test of phytostabilization. Chemosphere, 57, 1039–1046.

    Article  CAS  Google Scholar 

  • Scheffer, F., & Schachtschabel, P. (2010). Lehrbuch der Bodenkunde (16th ed., pp. 438–467). Heidelberg: Spektrum Akademischer.

    Google Scholar 

  • Schöning, A., & Brümmer, G. W. (2008). Extraction of mobile element fractions in forest soils using ammonium nitrate and ammonium chloride. Journal of Plant Nutrition and Soil Sciences, 171(3), 392–398.

    Article  Google Scholar 

  • Sorrell, C. A. (1971). Thermal expansion of Pb3O4. Journal of the American Ceramic Society, 54(10), 501–503.

    Article  CAS  Google Scholar 

  • Thanapop, C., Geater, A. F., Robson, M. G., Phakthongsuk, P., & Viroonudomphol, D. (2007). Exposure to lead of boatyard workers in southern Thailand. Journal of Occupational Health, 49(5), 345–352.

    Article  CAS  Google Scholar 

  • Tharr, D. (1996). Environmental and worker protection practices observed during lead-containing paint removal in four European countries. Applied Occupational and Environmental Hygiene, 11(11), 1269–1272.

    Article  CAS  Google Scholar 

  • Usman, A., Kuzyakov, Y., & Stahr, K. (2005). Effect of clay minerals on immobilization of heavy metals and microbial activity in a sewage sludge-contaminated soil. Journal of Soil and Sediments, 5(4), 245–252.

    Article  CAS  Google Scholar 

  • Usman, A. R. A., Kuzyakov, Y., Lorenz, K., & Stahr, K. (2006). Remediation of a soil contaminated with heavy metals by immobilizing compounds. Journal of Plant Nutrition and Soil Sciences, 169(2), 205–212.

    Article  CAS  Google Scholar 

  • Walker, D. J., Clemente, R., & Bernal, M. P. (2004). Contrasting effects of manure and compost on soil pH, heavy metal availability and growth of Chenopodium album L. in soil contaminated by pyritic mine waste. Chemosphere, 57(3), 215–224.

    Article  CAS  Google Scholar 

  • Yoo, M. S., & James, B. R. (2003). Zinc exchangeability as a function of pH in citric acid-amended soils. Soil Science, 168(5), 356–367.

    CAS  Google Scholar 

  • Zeien, H., & Brümmer, G. W. (1989). Chemische Extraktion zur Bestimmung von Schwermetallbindungsformen in Böden. Mitteilung der Deutschen Bodenkundlichen Gesellschaft, 59(1), 505–510.

    Google Scholar 

Download references

Acknowledgments

We are thankful to Gabriele Brand, Department of Biology, and Marianne Grupe, Department of Soil Science and Soil Conservation, Hochschule Ostwestfalen-Lippe, University of Applied Sciences, branch Höxter for facility and financial support. Dietmar Barkowski is acknowledged for details provided about the contaminated sites. The authors appreciate the laboratory and greenhouse support provided by the staff of the physical–geographical laboratory and the Botanical Garden of the Ruhr-University Bochum. We would also like to acknowledge the anonymous reviewers for their critical comments that have helped to improve this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcel Brokbartold.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brokbartold, M., Wischermann, M. & Marschner, B. Plant Availability and Uptake of Lead, Zinc, and Cadmium in Soils Contaminated with Anti-corrosion Paint from Pylons in Comparison to Heavy Metal Contaminated Urban Soils. Water Air Soil Pollut 223, 199–213 (2012). https://doi.org/10.1007/s11270-011-0851-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11270-011-0851-4

Keywords

Navigation