Skip to main content

Advertisement

Log in

Relating P Lability in Stream Sediments to Watershed Land Use via an Effective Sequential Extraction Scheme

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

High applications of P fertilizers and manure are general practice in intensive agriculture and may cause eutrophication in adjacent streams. Bioavailability of P can be estimated by sequential extractions commonly used for soil or sediment. A single combined method may facilitate more effective comparisons of topsoils and adjoining stream sediments, and enhance management decisions. In this study, the suitability of an established soil P sequential extraction was tested on stream bed sediments. The study was conducted in the Sumas River watershed in the agricultural Lower Fraser Valley, Canada. Sediment samples with differing land use (forest, low and high intensity agriculture) from 1993, 1994, 2008, and 2009 from 14 sites along the Sumas River and tributaries were used. Total sequential extraction concentrations were in agreement with aqua regia digestion (Rs = 0.96) and showed consistency over the study time sequence. P fractions released by 0.5 M NaHCO3 (median 14 %), 0.1 M NaOH (33 %), and 1.0 M HCl (38 %) were significantly (α = 0.05) higher than P released by other extractants. These three extraction steps provide a practical and time-effective assessment of P lability in stream sediments and may be used as a combined scheme for sediment and soil. Analytical results further revealed that land use has a major and characteristic impact on P lability. With a land use change from forest to intensive agriculture, results showed an increase in total P concentrations (30 to 4,000 ppm) and in P lability, in particular for the moderately labile NaOH-P fraction (20 to 50 %).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

P:

Phosphorus

Rs:

Spearman rank correlation coefficient

M:

Molar concentration (mol L−1)

NaHCO3 :

Sodium bicarbonate

NaOH:

Sodium hydroxide

HCl:

Hydrochloric acid

AAO:

Acid ammonium oxalate

AQ:

Aqua regia digestion

SEQ:

Sequential extraction

SR:

Sumas River

SC:

Swift Creek

AS:

Arnold Slough

MC:

Marshall Creek

R 2 :

Linear Pearson regression coefficient

References

  • Agudelo, S. C., Nelson, N. O., Barnes, P. L., Keane, T. D., & Pierzynski, G. M. (2011). Phosphorus adsorption and desorption potential of stream sediments and field soils in agricultural watersheds. Journal of Environment Quality, 40(1), 144–152.

    Article  CAS  Google Scholar 

  • Beaulieu, M. S., Bedard, P., Lanciault, P. (2001). Distribution and Concentration of Canadian Livestock. Agriculture and rural working paper series, Working paper No. 47. Ottawa: Agricultural Division, Statistics Canada.

  • Berka, C. S. (1996). Relationships between agricultural land use and surface water quality using a GIS: Sumas River watershed, Abbotsford, B.C. Master Thesis. Resource Management and Environmental Studies, University of British Columbia, Vancouver.

  • Berka, C., Schreier, H., & Hall, K. (2001). Linking water quality with agricultural intensification in a rural watershed. Water, Air, and Soil Pollution, 127, 389–401.

    Article  CAS  Google Scholar 

  • Bishop, P. L., Hively, W. D., Stedinger, J. R., Rafferty, M. R., Lojpersberger, J. L., & Bloomfield, J. A. (2005). Multivariate analysis of paired watershed data to evaluate agricultural best management practice effects on stream water phosphorus. Journal of Environmental Quality, 34(3), 1087–1101.

    Google Scholar 

  • Boström, B., Persson, G., & Broberg, B. (1988). Bioavailability of different phosphorus forms in freshwater systems. Hydrobiologia, 170, 133–155.

    Article  Google Scholar 

  • Brown, S., Lavkulich, L. M., & Schreier, H. (2011). Developing indicators for regional water quality assessment: an example from British Columbia Community Watersheds. Canadian Water Resources Journal, 36(3), 271–284.

    Article  Google Scholar 

  • Canadian Council of Ministers of the Environment (CCME) (2004). Canadian water quality guidelines for the protection of aquatic life: phosphorus. Canadian Guidance Framework for the Management of Freshwater Systems: Canadian Council of Ministers of the Environment, Winnipeg.

  • Carpenter, S. R. (2005). Eutrophication of aquatic ecosystems: bistability and soil phosphorus. Proceedings of the National Academy of Sciences of the United States of America, 102(29), 10002–10005.

    Article  CAS  Google Scholar 

  • Carter, J. (1998). Sumas and North Matsqui Watersheds—1997 farm practices survey. Environment Canada, Fraser River Action Plan, Pacific and Yukon Region: North Vancouver.

    Google Scholar 

  • Chang, S. C., & Jackson, M. L. (1957). Fractionation of soil phosphorus. Journal of Soil Science, 84(2), 133–144.

    Article  CAS  Google Scholar 

  • Chen, M., & Ma, L. Q. (2001). Comparison of three aqua regia digestion methods for twenty Florida soils. Soil Science Society of America Journal, 65, 491–499.

    Article  CAS  Google Scholar 

  • Condron, L. M., & Newman, S. (2011). Revisiting the fundamentals of phosphorus fractionation of sediments and soils. Journal of Soils and Sediments, 11(5), 830–840.

    Article  CAS  Google Scholar 

  • Crawley, M. J. (2007). The R book. West Sussex: Wiley.

    Book  Google Scholar 

  • Cross, A. F., & Schlesinger, W. H. (1995). A literature review and evaluation of the Hedley fractionation: applications to the biogeochemical cycle of soil phosphorus in natural ecosystems. Geoderma, 64(3–4), 197–214.

    Article  CAS  Google Scholar 

  • Department of Fisheries and Oceans (DFO). (1999). Lower Fraser Valley streams strategic review: Fraser River action plan. Vancouver, British Columbia: Habitat and Enhancement Branch Fisheries and Oceans Canada.

    Google Scholar 

  • Dodds, W. K. (2006). Eutrophication and trophic state in rivers and streams. Limnology and Oceanography, 51(1, part 2), 671–680.

    Article  CAS  Google Scholar 

  • Dou, Z., Toth, J. D., Galligan, D. T., Ramberg Jr., C. F., & Ferguson, J. D. (2000). Laboratory procedures for characterizing manure phosphorus. Journal of Environmental Quality, 29, 508–514.

  • Environment Canada (EC) (2009a). National climate data and information archive—Abbotsford Airport, British Columbia. http://climate.weatheroffice.ec.gc.ca/. Accessed 10 April 2011.

  • Environment Canada (EC) (2009b). Archived hydrometric data—Sumas River near Huntingdon (08MH029). http://www.wsc.ec.gc.ca/applications/H2O/. Accessed 10 April 2011.

  • Goldin, A. (1992). Soil survey of Whatcom County Area, Washington. United States Department of Agriculture, Soil Conservation Service, in cooperation with Washington State Department of Natural Resources and Washington State University, Agriculture Research Center.

  • Golterman, H. L. (1996). Fractionation of sediment phosphate with chelating compounds: a simplification, and comparison with other methods. Hydrobiologia, 335(1), 87–95.

    Article  CAS  Google Scholar 

  • Guo, F., & Yost, R. S. (1999). Quantifying the available soil phosphorus pool with the acid ammonium oxalate method. Soil Science Society of America Journal, 63(3), 651–656.

    Article  CAS  Google Scholar 

  • Healey, M. (1999). Seeking sustainability in the Lower Fraser Basin: issues and choices. Vancouver, British Columbia: Institute for Resources and the Environment, Westwater Research.

    Google Scholar 

  • Hedley, M. J., Stewart, J. W. B., & Chauhan, B. S. (1982). Changes in inorganic and organic soil phosphorus fractions induced by cultivation practices and by laboratory incubations. Soil Science Society of America Journal, 46(5), 970–976.

    Article  CAS  Google Scholar 

  • Hieltjes, A. H. M., & Lijklema, L. (1980). Fractionation of inorganic phosphates in calcareous sediments. Journal of Environmental Quality, 9(3), 405–407.

    Article  CAS  Google Scholar 

  • Hilton, J., O’Hare, M., Bowes, M. J., & Jones, J. I. (2006). How green is my river? A new paradigm of eutrophication in rivers. The Science of the Total Environment, 365(1–3), 66–83.

    Article  CAS  Google Scholar 

  • Hoffman, A. R., Armstrong, D. E., Lathrop, R. C., & Penn, M. R. (2009). Characteristics and influence of phosphorus accumulated in the bed sediments of a stream located in an agricultural watershed. Aquatic Geochemistry, 15(3), 371–389.

    Article  CAS  Google Scholar 

  • Holmes, E. P., Wilson, J., Schreier, H., & Lavkulich, L. M. (2012). Processes affecting surface and chemical properties of chrysotile: implications for reclamation of asbestos in the natural environment. Canadian Journal of Soil Science, 92, 229–242.

    Article  CAS  Google Scholar 

  • Holtan, H., Kamp-Nielsen, L., & Stuanes, A. O. (1988). Phosphorus in soil, water and sediment: an overview. Hydrobiologia, 170(1), 19–34.

    Article  CAS  Google Scholar 

  • Hupfer, M., Gaechter, R., & Giovanoli, R. (1995). Transformation of phosphorus species in settling seston and during early sediment diagenesis. Aquatic Sciences, 57(4), 305–324.

    Article  Google Scholar 

  • Kashem, A., Akinremi, O. O., & Racz, G. J. (2004). Phosphorus fractions in soil amended with organic and inorganic phosphorus sources. Canadian Journal of Soil Science, 84(1), 83–91.

    Article  Google Scholar 

  • Kowalenko, C. G., Schmidt, O., & Hughes-Games, G. (2007). Fraser Valley soil nutrient study 2005. Abbotsford, Agassiz, British Columbia: British Columbia Agriculture Council.

    Google Scholar 

  • Loring, D. H., & Rantala, R. T. T. (1992). Manual for the geochemical analyses of marine sediments and suspended particulate matter. Earth-Science Reviews, 32(4), 235–283.

    Article  CAS  Google Scholar 

  • Luttmerding, H. A. (1980). Soils of the Langley-Vancouver map area B.C. Soil survey report no. 15, Vol. 1: soil map mosaics and legend, Lower Fraser Valley (Scale 1:25 000). RAB Bulletin 18. B.C. Ministry of Environment, Assessment and Planning Division). British Columbia: Kelowna.

  • Mainstone, C. P., & Parr, W. (2002). Phosphorus in rivers—ecology and management. The Science of the Total Environment, 282–283, 25–47.

    Article  Google Scholar 

  • McDowell, R., Sharpley, A., & Folmar, G. (2001). Phosphorus export from an agricultural watershed: linking source and transport mechanisms. Journal of Environmental Quality, 30, 1587–1595.

    Article  CAS  Google Scholar 

  • Millennium Ecosystem Assessment. (2005). Ecosystems and human well-being: synthesis. Washington, D.C.: Island Press.

    Google Scholar 

  • Negassa, W., & Leinweber, P. (2009). How does the Hedley sequential phosphorus fractionation reflect impacts of land use and management on soil phosphorus: a review. Journal of Plant Nutrition and Soil Science, 172(3), 305–325.

    Article  CAS  Google Scholar 

  • Niskavaara, H., Reimann, C., Chekushin, V., & Kashulina, G. (1997). Seasonal variability of total and easily leachable element contents in topsoils (0–5 cm) from eight catchments in the European Arctic (Finland, Norway and Russia). Environmental Pollution, 96(2), 261–274.

    Article  CAS  Google Scholar 

  • Palmer-Felgate, E. J., Jarvie, H. P., Withers, P. J. A., Mortimer, R. J. G., & Krom, M. D. (2009). Stream-bed phosphorus in paired catchments with different agricultural land use intensity. Agriculture, Ecosystems & Environment, 134(1–2), 53–66.

    Article  CAS  Google Scholar 

  • Pettersson, K., Boström, B., & Jacobsen, O.-S. (1988). Phosphorus in sediments—speciation and analysis. Hydrobiologia, 170(1), 91–101.

    Article  CAS  Google Scholar 

  • Pierzynski, G. M., Sims, J. T., & Vance, G. F. (2000). Soils and environmental quality. Boca Raton, FL: CRC Press.

    Google Scholar 

  • Poirier, S.-C., Whalen, J. K., & Michaud, A. R. (2012). Bioavailable phosphorus in fine-sized sediments transported from agricultural fields. Soil Science Society of America Journal, 76(1), 258–267.

    Article  CAS  Google Scholar 

  • Pretty, J. N., Mason, C. F., Nedwell, D. B., Hine, R. E., Leaf, S., & Dils, R. (2003). Environmental costs of freshwater eutrophication in England and Wales. Environmental Science & Technology, 37(2), 201–208.

    Article  CAS  Google Scholar 

  • Psenner, R., Pucska, R., & Sage, M. (1984). Fractionation of organic and inorganic phosphorus compounds in lake sediments: an attempt to characterize ecologically important fractions. Archiv fuer Hydrobiologie, 1(1), 111–155.

    Google Scholar 

  • Rauret, G., López-Sánchez, J. F., Sahuquillo, A., Rubio, R., Davidson, C., Ure, A., et al. (1999). Improvement of the BCR three step sequential extraction procedure prior to the certification of new sediment and soil reference materials. Journal of Environmental Monitoring, 1(1), 57–61.

    Article  CAS  Google Scholar 

  • Rawlins, B. G. (2011). Controls on the phosphorus content of fine stream bed sediments in agricultural headwater catchments at the landscape-scale. Agriculture, Ecosystems & Environment, 144(1), 352–363.

    Article  CAS  Google Scholar 

  • Richards, J. E., Bates, T. E., & Sheppard, S. C. (1995). Changes in the forms and distribution of soil phosphorus due to long-term corn production. Canadian Journal of Soil Science, 75(3), 311–318.

    Article  Google Scholar 

  • Ruban, V., López-Sánchez, J. F., Pardo, P., Rauret, G., Muntau, H., & Quevauviller, P. (1999). Selection and evaluation of sequential extraction procedures for the determination of phosphorus forms in lake sediment. Journal of Environmental Monitoring, 1(1), 51–56.

    Article  CAS  Google Scholar 

  • Ruban, V., López­Sánchez, J. F., Pardo, P., Rauret, G., Muntau, H., & Quevauviller, P. (2001). Development of a harmonised phosphorus extraction procedure and certification of a sediment reference material. Journal of Environmental Monitoring, 3(1), 121–125.

    Article  CAS  Google Scholar 

  • Ruttenberg, K. C. (1992). Development of a sequential extraction method for different forms of phosphorus in marine sediments. Limnology and Oceanography, 37(7), 1460–1482.

    Article  CAS  Google Scholar 

  • Schindler, D. W. (1974). Eutrophication and recovery in experimental lakes: implications for lake management. Science, 184(4139), 897–899.

    Article  CAS  Google Scholar 

  • Schreier, H., Bestbeir, R., & Derksen, G. (2003). Agricultural nutrient management trends in the Lower Fraser Valley of BC (based on agricultural census 1991–2001). CD from Institute for Resources and the Environment. Vancouver: University of British Columbia.

    Google Scholar 

  • Self-Davis, M. L., Moore, P. A., & Joern, B. C. (2000). Determination of water- and/or dilute salt-extractable phosphorus. In G. M. Pierzynski (Ed.), Methods of phosphorus analysis for soils, sediments, residuals, and waters. Southern Cooperative Series Bulletin No. 396. Manhattan, KS: USDA-CSREES Regional Committee.

    Google Scholar 

  • Sharpley, A. N., & Syers, J. K. (1979). Phosphorus inputs into a stream draining an agricultural watershed. Water, Air, and Soil Pollution, 11, 417–428.

    Article  CAS  Google Scholar 

  • Smith, I. M. (2004). Cumulative effects of agricultural intensification on nutrient and trace metal pollution in the Sumas River watershed, Abbotsford, B.C. October. Master Thesis. Resource Management and Environmental Studies, University of British Columbia, Vancouver.

  • Smith, I. M., Hall, K. J., Lavkulich, L. M., & Schreier, H. (2007). Trace metal concentrations in an intensive agricultural watershed in British Columbia, Canada. Journal of the American Water Resources Association, 43(6), 1455–1467.

    Article  CAS  Google Scholar 

  • Tiessen, H., & Moir, J. O. (1993). Characterization of available P by sequential extraction. In M. R. Carter (Ed.), Soil sampling and methods of analysis (pp. 75–86). Boca Raton: Canadian Society of Soil Science, Lewis Publishers.

    Google Scholar 

  • United States Department of Agriculture, USDA (2011). Natural Resources Conservation Service, Web Soil Survey. http://websoilsurvey.nrcs.usda.gov/. Accessed 15 May 2011.

  • Uygur, V., & Karabatak, I. (2009). The effect of organic amendments on mineral phosphate fractions in calcareous soils. Journal of Plant Nutrition and Soil Science, 172(3), 336–345.

    Article  CAS  Google Scholar 

  • Williams, J. D. H., Syers, J. K., & Walker, T. W. (1967). Fractionation of soil inorganic phosphate by a modification of Chang and Jackson’s procedure. Soil Science Society of America Proceedings, 31(6), 736–739.

    Article  CAS  Google Scholar 

  • Wilson, J. E. (2010). Assessment of cumulative effects of urban and agricultural land uses on indicators of water and stream quality. Master Thesis. Resource Management and Environmental Studies, University of British Columbia, Vancouver.

  • Xie, C., Tang, J., Zhao, J., Wu, D., & Xu, X. (2011). Comparison of phosphorus fractions and alkaline phosphatase activity in sludge, soils, and sediments. Journal of Soils and Sediments, 11(8), 1432–1439.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Silja V. Hund acknowledges funding from the German Academic Exchange Service (DAAD). The authors also would like to thank Hans Schreier for his contributions to this work and Trudy Naugler for the assistance with the laboratory analysis, both from the University of British Columbia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Silja V. Hund.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hund, S.V., Brown, S., Lavkulich, L.M. et al. Relating P Lability in Stream Sediments to Watershed Land Use via an Effective Sequential Extraction Scheme. Water Air Soil Pollut 224, 1643 (2013). https://doi.org/10.1007/s11270-013-1643-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-013-1643-9

Keywords

Navigation