Skip to main content

Advertisement

Log in

Modeling Onsite Wastewater Treatment Systems in a Coastal Texas Watershed

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Onsite wastewater treatment systems (OWTSs) are commonly used to treat domestic wastewater in the Dickinson Bayou watershed, located between Houston and Galveston. The Dickinson Bayou is classified as “impaired” by the Texas Commission on Environmental Quality due to high levels of indicator bacterium, Escherichia coli. Failing OWTSs in the watershed are possible sources for the impairment of the bayou. Nearly all of the watershed is at risk to failing OWTSs due to high water table and clay content in the soil. The HYDRUS modeling software for water and solute flow through variably saturated media was used to simulate the performance of (1) conventional OWTSs, (2) aerobic treatment units (ATUs) with spray distribution, and (3) mounded OWTSs under conditions indicative of the Dickinson Bayou watershed. The purpose of the study was to simulate system performance under existing conditions. Simulation results indicated that both the conventional and ATU systems fail due to effluent ponding and E. coli transport to the land surface due to high water tables and clay soils in the watershed. Simulations indicated that conventional and ATU systems failed when rainfall intensity was greater than 0.25 cm/h. However, the model simulations indicate mound systems did not fail under existing conditions as they did not allow E. coli to reach the surface or ponding to occur. Consequently, mound systems can be considered as better systems in this watershed to minimize bacterial loadings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Beach, D. N. H., & McCray, J. E. (2003). Numerical modeling of unsaturated flow in wastewater soil absorption systems. Ground Water Monitoring & Remediation, 23(2), 64–72. doi:10.1111/j.1745-6592.2003.tb00672.x.

    Article  Google Scholar 

  • Beal, C. D., Rassam, D. W., Gardner, E. A., Kirchhof, G., & Menzies, N. W. (2008). Influence of hydraulic loading and effluent flux on surface surcharging in soil absorption systems. Journal of Hydrologic Engineering, 13(8), 681–692. doi:10.1061/(ASCE)1084-0699(2008)13:8(681).

    Article  Google Scholar 

  • Bradford, S. A., Simunek, J., & Walker, S. L. (2006). Transport and straining of E. coli O157:H7 in saturated porous media. Water Resources Research, 42(12). doi:10.1029/2005WR004805.

  • Brassington, R. (1988). Field hydrogeology (Geological Society of London Handbook Series).

    Google Scholar 

  • Budrene, E. O., & Berg, H. C. (1991). Complex patterns formed by motile cells of Escherichia coli. Nature, 349(6310), 630–633. doi:10.1038/349630a0.

    Article  CAS  Google Scholar 

  • Carsel, R. F., & Parrish, R. S. (1988). Developing joint probability distributions of soil water retention characteristics. Water Resources Research, 24(5), 755–769. doi:10.1029/WR024i005p00755.

    Article  Google Scholar 

  • DBWP. (2009). Dickinson Bayou Watershed protection plan (Dickinson Bayou Watershed Partnership with TCEQ & EPA).

    Google Scholar 

  • Foppen, J. W., van Herwerden, M., & Schijven, J. (2007). Measuring and modelling straining of Escherichia coli in saturated porous media. Journal of Contaminant Hydrology, 93(1-4), 236–254. doi:10.1016/j.jconhyd.2007.03.001.

    Article  CAS  Google Scholar 

  • Gallagher, M. A., Karthikeyan, R., & Mukhtar, S. (2012). Growth kinetics of wildlife E. coli isolates in soil and water. Journal of Environmental Protection, 3(August), 838–846. doi:10.4236/jep.2012.328098.

    Article  Google Scholar 

  • Harris County Flood Warning System. (2012). Rainfall gauge data: gauges 100, 120, 125, & 130; January 2008-December 2011.

    Google Scholar 

  • Havelaar, A. H., Nieuwstad, T. J., Meulemans, C. C. E., & van Olphen, M. (1991). F-specific RNA bacteriophages as model viruses in UV disinfection of wastewater. Water Science and Technology, 24(2), 347–352. http://wst.iwaponline.com/content/24/2/347.abstract. Accessed 2 Feb 2016.

    Google Scholar 

  • Highfield, W., Jacob, J., & Blessing, R. (2011). Dickinson Bayou on-site sewage facility alternatives analysis. Contract No 582-8-77058.

    Google Scholar 

  • Lesikar, B. J. (1999a). On-site wastewater treatment systems: Conventional Septic Tank/Drain Field. Texas Agricultural Extension Service. http://oaktrust.library.tamu.edu/handle/1969.1/86760.

  • Lesikar, B. J. (1999b). On-site wastewater treatment systems: Spray Distribution. Texas Agricultural Extension Service. http://oaktrust.library.tamu.edu/handle/1969.1/86761.

  • Lesikar, B. J. (2008). Onsite wastewater treatment systems: Septic tank/soil absorption field. Texas AgriLife Extension Service. http://oaktrust.library.tamu.edu/handle/1969.1/87821.

  • Lesikar, B. J., & Weynand, V. (2002). On-site wastewater treatment systems: Mound system. Texas AgriLife Extension Service. http://oaktrust.library.tamu.edu/handle/1969.1/87131.

  • Mohamed, A. A., Sasaki, T., & Watanabe, K. (2000). Solute transport through unsaturated soil due to evaporation. Journal of Environmental Engineering, 126(9), 842–848. doi:10.1061/(ASCE)0733-9372(2000)126:9(842).

    Article  CAS  Google Scholar 

  • Morris, C. E. (2000). Unsaturated flow in nonwoven geotextiles. ISRM International Symposium. International Society for Rock Mechanics. https://www.onepetro.org/conference-paper/ISRM-IS-2000-099

  • Motz, E. C., Cey, E., Ryan, M. C., & Chu, A. (2011). Vadose zone microbial transport below at-grade distribution of wastewater effluent. Water, Air, & Soil Pollution, 223(2), 771–785. doi:10.1007/s11270-011-0901-y.

    Article  Google Scholar 

  • Nakagawa, K., Hosokawa, T., Wada, S.-I., Momii, K., Jinno, K., & Berndtsson, R. (2010). Modelling reactive solute transport from groundwater to soil surface under evaporation. Hydrological Processes, 24(5), 608–617. doi:10.1002/hyp.7555.

    Article  CAS  Google Scholar 

  • National Weather Service. (2012). Preliminary monthly climate data: League City, January 2008-December 2011. http://preview.weather.gov/climate/getclimate_nonjs.php?wfo=hgx.

  • NRCS. (1996). Soil quality resource concerns: compaction. Soil Quality Information Sheet. Natural Resources Conservation Service.

    Google Scholar 

  • NRCS. (2011). Web soil survey. National Resource Conservation Service. http://websoilsurvey.sc.egov.usda.gov/App/WebSoilSurvey.aspx.

  • NSF International. (2000a). Residential wastewater treatment systems. NSF/ANSI 40.

  • NSF International. (2000b). Wastewater treatment system components and devices. NSF/ANSI 46.

  • Öztürk, H. S., & Özkan, İ. (2004). Effects of evaporation and different flow regimes on solute distribution in soil. Transport in Porous Media, 56(3), 245–255. doi:10.1023/B:TIPM.0000026088.13958.43.

    Article  Google Scholar 

  • Padia, R., Karthikeyan, R., Mukhtar, S., & Parker, I. (2012). Occurence and fate of E. coli from various non-point sources in a subtropical watershed. Journal of Natural and Environmental Sciences, 3(1), 9–18.

    Google Scholar 

  • Pang, L., & Šimůnek, J. (2006). Evaluation of bacteria-facilitated cadmium transport in gravel columns using the HYDRUS colloid-facilitated solute transport model. Water Resources Research, 42(12). doi:10.1029/2006WR004896.

  • Pang, L., Close, M., Goltz, M., Sinton, L., Davies, H., Hall, C., & Stanton, G. (2004). Estimation of septic tank setback distances based on transport of E. coli and F-RNA phages. Environment International, 29(7), 907–921. doi:10.1016/S0160-4120(03)00054-0.

    Article  CAS  Google Scholar 

  • Pang, L., Nokes, C., Šimůnek, J., Kikkert, H., & Hector, R. (2006). Modeling the impact of clustered septic tank systems on groundwater quality. Vadose Zone Journal, 5(2), 599. doi:10.2136/vzj2005.0108.

    Article  CAS  Google Scholar 

  • Reed Stowe & Yanke. (2001). Study to determine the magnitude of, and reasons for, chronically malfunctioning on-site sewage facility systems in Texas. http://www.tceq.texas.gov/assets/public/compliance/compliance_support/regulatory/ossf/StudyToDetermine.pdf.

  • Schaap, M. G., Leij, F. J., & van Genuchten, M. T. (2001). ROSETTA: a computer program for estimating soil hydraulic parameters with hierarchical pedotransfer functions. Journal of Hydrology, 251(3), 163–176. doi:10.1016/S0022-1694(01)00466-8.

    Article  Google Scholar 

  • Simunek, J., van Genuchten, M. T., & Sejna, M. (2011). The HYDRUS software package for simulating the two- and three-dimensional movement of water, heat, and multiple solutes in variably-saturated media: technical manual 2.0. Prague: PC-Progress.

    Google Scholar 

  • StataCorp. (2011). Stata Statistical Software: release 12. College Station: StataCorp LP.

    Google Scholar 

  • TCEQ. (2011). Eight total maximum daily loads for indicator bacteria in Dickinson Bayou and three tidal tributaries. Texas Commission on Environmental Quality.

    Google Scholar 

  • Texas AgriLife Extension. (2005). Texas average evapotranspiration.

    Google Scholar 

  • Texas Coastal Watershed Program. (2010). Bacteria implementation plan for Dickinson Bayou watershed (Fact Sheet 7).

    Google Scholar 

  • Texas Coastal Watershed Program. (2013). Updated On Site Sewage Facility (OSSF) Hazard Map. http://dickinsonbayou.org/maps-and-photos/. Accessed 6 Jan 2016.

  • University of Wisconsin-Madison. (1978). Management of small waste flows. doi:600/2-78-73.

  • USEPA. (2002). Onsite wastewater treatment systems manual (EPA/625/R-00/008).

    Google Scholar 

  • Williams, N. D., & Anwar Abouzakhm, M. (1989). Evaluation of geotextile/soil filtration characteristics using the hydraulic conductivity ratio analysis. Geotextiles and Geomembranes, 8(1), 1–26. doi:10.1016/0266-1144(89)90008-3.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aaron Forbis-Stokes.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Figure 1S

(DOCX 1385 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Forbis-Stokes, A., Munster, C., Karthikeyan, R. et al. Modeling Onsite Wastewater Treatment Systems in a Coastal Texas Watershed. Water Air Soil Pollut 227, 430 (2016). https://doi.org/10.1007/s11270-016-3120-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-016-3120-8

Keywords

Navigation