Skip to main content

Advertisement

Log in

Enhanced Arsenic Mobility in a Dystrophic Water Reservoir System After Acidification Recovery

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Arsenic concentrations in a drinking water reservoir system in the Eastern Ore mountains (Osterzgebirge, Germany) were observed over a 17-year period. The region experienced an environmental change during the past 20 years with decreasing acid, sulphur and nitrogen deposition and a recovering vitality of forested catchment sites. An increase of the arsenic content in the reservoir waters during that change was observed. This was caused by a diminished nitrate supply leading to lower redox potential in the sediments favouring sediment arsenic release. The recent annual cycle in the Altenberg reservoir water arsenic concentration was found to be independent from artificial aeration of the hypoxic hypolimnion during the summer stratification. However, we found a strong seasonal dependent change in water As concentration, with a maximum in autumn and a minimum in spring. The low productive system is driven by peat derived organic matter. For the recent arsenic catchment yield coherencies to dissolved organic carbon export and runoff intensity were found, indicating rising arsenic loads due to climate-related soil organic matter destabilization. Thus, in the reservoir system, both dry and wet climate conditions can increase the water As concentrations due to an internal arsenic release and a catchment arsenic import.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Anesio, A. M., & Graneli, W. (2004). Photochemical mineralization of dissolved organic carbon in lakes of differing pH and humic content. Archiv Fur Hydrobiologie, 160, 105–116.

    Article  CAS  Google Scholar 

  • APHA. (1992). Standard methods for examination of water and wastewater. Washington, DC: Association APH.

    Google Scholar 

  • Armbruster, M., Abiy, M., & Feger, K. H. (2003). The biogeochemistry of two forested catchments in the black Forest and the eastern Ore Mountains (Germany). Biogeochemistry, 65, 341–368.

    Article  CAS  Google Scholar 

  • Azcue, J. M., & Nriagu, J. O. (1995). Impact of abandoned mine tailings on the arsenic concentrations in Moira Lake, Ontario. Journal of Geochemical Exploration, 52, 81–89.

    Article  CAS  Google Scholar 

  • Bauer, M., & Blodau, C. (2006). Mobilization of arsenic by dissolved organic matter from iron oxides, soils and sediments. The Science of the Total Environment, 354, 179–190.

    Article  CAS  Google Scholar 

  • Bauer, M., & Blodau, C. (2009). Arsenic distribution in the dissolved, colloidal and particulate size fraction of experimental solutions rich in dissolved organic matter and ferric iron. Geochimica et Cosmochimica Acta, 73, 529–542.

    Article  CAS  Google Scholar 

  • Bernhofer, C., Franke, J., Fischer, S., Kirsten, L., Körner, P., Kostrowski, D., Prasse, H., Schaller, A., & Donix, T. (2015). Analyse der Klimaentwicklung in Sachsen (analysis of climate development in Saxony). Schriftenreihe des LfULG. 3–2015. Dresden: Sächsisches Landesamt für Umwelt, Landwirtschaft und Geologie.

    Google Scholar 

  • Curtis, C. J., & Simpson, G. L. (2014). Trends in bulk deposition of acidity in the UK, 1988–2007, assessed using additive models. Ecological Indicators, 37, 274–286.

    Article  CAS  Google Scholar 

  • D’Arcy, P., & Carignan, R. (1997). Influence of catchment topography on water chemistry in southeastern Quebec shield lakes. Canadian Journal of Fisheries and Aquatic Sciences, 54, 2215–2227.

    Article  Google Scholar 

  • Dixit, S., & Hering, J. G. (2003). Comparison of arsenic (V) and arsenic (III) sorption onto iron oxide minerals: Implications for arsenic mobility. Environmental Science & Technology, 37, 4182–4189.

    Article  CAS  Google Scholar 

  • Dousova, B., Erbanova, L., & Novak, M. (2007). Arsenic in atmospheric deposition at the Czech-polish border: Two sampling campaigns 20 years apart. The Science of the Total Environment, 387, 185–193.

    Article  CAS  Google Scholar 

  • EN-ISO-15587-2. (2002). Water quality - digestion for the determination of selected elements in water - part 2: Nitric acid digestion. German version EN ISO 15587–2:2002. Berlin: Deutsches Institut für Normung.

    Google Scholar 

  • EN-ISO-17294-2. (2004). Water quality - application of inductively coupled plasma mass spectrometry (ICP-MS) - part 2: Determination of 62 elements. German version EN ISO 17294–2:2004. Berlin: Deutsches Institut für Normung.

    Google Scholar 

  • Erbanova, L., Novak, M., Fottova, D., & Dousova, B. (2008). Export of arsenic from forested catchments under easing atmospheric pollution. Environmental Science & Technology, 42, 7187–7192.

    Article  CAS  Google Scholar 

  • Gachter, R., & Wehrli, B. (1998). Ten years of artificial mixing and oxygenation: No effect on the internal phosphorus loading of two eutrophic lakes. Environmental Science & Technology, 32, 3659–3665.

    Article  Google Scholar 

  • Hasegawa, H., Rahman, M. A., Kitahara, K., Itaya, Y., Maki, T., & Ueda, K. (2010). Seasonal changes of arsenic speciation in lake waters in relation to eutrophication. The Science of the Total Environment, 408, 1684–1690.

    Article  CAS  Google Scholar 

  • Hebbel H. Analyse „stetigkeitsbasierter“ Methoden zur Bestimmung von Stofffrachten in Fließgewässern. Umweltwissenschaften und Schadstoff-Forschung 2009; 21: 527–538.

  • Hemond, H. F., & Lin, K. (2010). Nitrate suppresses internal phosphorus loading in an eutrophic lake. Water Research, 44, 3645–3650.

    Article  CAS  Google Scholar 

  • Huang, J. H., & Matzner, E. (2007). Biogeochemistry of organic and inorganic arsenic species in a forested catchment in Germany. Environmental Science & Technology, 41, 1564–1569.

    Article  CAS  Google Scholar 

  • IPCC. Climate change 2014: Synthesis report. Contribution of working groups I, II and III to the fifth assessment report of the intergovernmental panel on climate change Core Writing Team, R.K. Pachauri and L.A. Meyer (eds.) IPCC, Geneva, 151 pp. 2014.

  • Jay, J. A., Blute, N. K., Lin, K., Senn, D. B., Hemond, H. F., & Durant, J. L. (2005). Controls on arsenic speciation and solid-phase partitioning in the sediments of a two-basin lake. Environmental Science & Technology, 39, 9174–9181.

    Article  CAS  Google Scholar 

  • Kalbitz, K., Solinger, S., Park, J. H., Michalzik, B., & Matzner, E. (2000). Controls on the dynamics of dissolved organic matter in soils: A review. Soil Science, 165, 277–304.

    Article  CAS  Google Scholar 

  • Kandler, O., & Innes, J. L. (1995). Air pollution and forest decline in Central Europe. Environmental Pollution, 90, 171–180.

    Article  CAS  Google Scholar 

  • Kleeberg, A., & Dudel, E. G. (1997). Changes in extent of phosphorus release in a shallow lake (lake grosser Muggelsee; Germany, Berlin) due to climatic factors and load. Marine Geology, 139, 61–75.

    Article  CAS  Google Scholar 

  • Kuhn, A., & Sigg, L. (1993). Arsenic cycling in eutrophic lake Greifen, Switzerland - influence of seasonal redox processes. Limnology and Oceanography, 38, 1052–1059.

    Article  CAS  Google Scholar 

  • Lehmann, J., & Präger, F. (1992). Reliefentwicklung und periglaziäre Schuttdecken im oberen Erzgebirge. In K. Billwitz, K. D. Jäger, & W. Janke (Eds.), Jungquartäre Landschaftsräume: Aktuelle Forschungen zwischen Atlantik und Tienschan (pp. 110–126). Berlin and Heidelberg: Springer.

    Chapter  Google Scholar 

  • Leise S, Zimmermann F, Matschullat J. Unter künftigen‚ Normalbedingungen zu erwartende chemische, größenfraktionierte Aerosol- und Feinstaub-Charakteristik einschließlich Herkunft, Transport, Deposition. In: Renner E, editor. Entwicklung und Erprobung eines Integrierten Regionalen Klimaanpassungsprogramms für die Modellregion Dresden (RegKlam, TP 2.2c). Rhombos-Verlag, Berlin, 2013.

  • LfULG. Digitale Bodenkarte des Freistaates Sachsen 1:50.000, http://www.umwelt.sachsen.de/umwelt/infosysteme/weboffice101/synserver?project=boden-bka&language=de&view=bka, last Access on 14 Oct 2015. Sächsisches Landesamt für Umwelt, Landwirtschaft und Geologie, 2012.

  • Liu, R. B., Yang, C. L., Li, S. Y., Sun, P. S., Shen, S. L., Li, Z. Y., & Liu, K. (2014). Arsenic mobility in the arsenic-contaminated Yangzonghai Lake in China. Ecotoxicology and Environmental Safety, 107, 321–327.

    Article  CAS  Google Scholar 

  • Martin, A. J., & Pedersen, T. F. (2002). Seasonal and interannual mobility of arsenic in a lake impacted by metal mining. Environmental Science & Technology, 36, 1516–1523.

    Article  CAS  Google Scholar 

  • Matschullat, J., Maenhaut, W., Zimmermann, F., & Fiebig, J. (2000). Aerosol and bulk deposition trends in the 1990’s, eastern Erzgebirge, Central Europe. Atmospheric Environment, 34, 3213–3221.

    Article  CAS  Google Scholar 

  • Mikutta, C., & Kretzschmar, R. (2011). Spectroscopic evidence for ternary complex formation between arsenate and ferric iron complexes of humic substances. Environmental Science & Technology, 45, 9550–9557.

    Article  CAS  Google Scholar 

  • Monteith, D. T., Evans, C. D., Henrys, P. A., Simpson, G. L., & Malcolm, I. A. (2014). Trends in the hydrochemistry of acid-sensitive surface waters in the UK 1988–2008. Ecological Indicators, 37, Part B, 287–303.

    Article  Google Scholar 

  • Nebe, W., Abiy, M., Hofmann, W., & Weiske, A. (1998). Standorte der Experimentalflächen. In W. Nebe, A. Roloff, & M. Vogel (Eds.), In: Untersuchungen von Waldökosystemen im Erzgebirge als Grundlage für einen ökologisch begründeten Waldumbau. In: Forstwissenschaftliche Beiträge Tharandt, 4 (pp. 19–27). TU Dresden, Tharandt: Fachrichtung Forstwesen.

    Google Scholar 

  • Oremland, R. S., Stolz, J. F., & Hollibaugh, J. T. (2004). The microbial arsenic cycle in mono Lake, California. FEMS Microbiology Ecology, 48, 15–27.

    Article  CAS  Google Scholar 

  • Oulehle, F., Chuman, T., Majer, V., & Hruska, J. (2013). Chemical recovery of acidified bohemian lakes between 1984 and 2012: The role of acid deposition and bark beetle induced forest disturbance. Biogeochemistry, 116, 83–101.

    Article  CAS  Google Scholar 

  • Oulehle, F., McDowell, W. H., Aitkenhead-Peterson, J. A., Kram, P., Hruska, J., Navratil, T., Buzek, F., & Fottova, D. (2008). Long-term trends in stream nitrate concentrations and losses across watersheds undergoing recovery from acidification in the Czech Republic. Ecosystems, 11, 410–425.

    Article  CAS  Google Scholar 

  • Planer-Friedrich, B., London, J., McCleskey, R. B., Nordstrom, D. K., & Wallschlager, D. (2007). Thioarsenates in geothermal waters of yellowstone national park: Determination, preservation, and geochemical importance. Environmental Science & Technology, 41, 5245–5251.

    Article  CAS  Google Scholar 

  • Rahman, M. A., & Hasegawa, H. (2012). Arsenic in freshwater systems: Influence of eutrophication on occurrence, distribution, speciation, and bioaccumulation. Applied Geochemistry, 27, 304–314.

    Article  Google Scholar 

  • R-Development-Core-Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3–900051–07-0. URL http://www.R-project.org/. 2011.

  • Rothwell, J. J., Taylor, K. G., Ander, E. L., Evans, M. G., Daniels, S. M., & Allott, T. E. H. (2009). Arsenic retention and release in ombrotrophic peatlands. The Science of the Total Environment, 407, 1405–1417.

    Article  CAS  Google Scholar 

  • Schaller, J., Brackhage, C., Mkandawire, M., & Dudel, G. (2011). Metal/metalloid accumulation/remobilization during aquatic litter decomposition in freshwater: A review. The Science of the Total Environment, 409, 4891–4898.

    Article  CAS  Google Scholar 

  • Scheithauer, J. (2006). Umweltwandel im Erzgebirge: eine vergleichende Analyse und Bewertung geoökologischer Prozesse in bewaldeten Einzugsgebieten von Trinkwassertalsperren der oberen Berglagen. Berlin: Rhombos-Verlag.

    Google Scholar 

  • Schmidt, P. A. (1993). Changes of Flora and Vegetation of forests under the influence of atmospheric depositions. Forstwissenschaftliches Centralblatt, 112, 213–224.

    Article  Google Scholar 

  • Senn, D. B., Gawel, J. E., & Jay, J. A. (2007). Long-term fate of a pulse arsenic input to a eutrophic lake. Environmental Science & Technology, 41, 3062–3068.

    Article  CAS  Google Scholar 

  • Senn, D. B., & Hemond, H. F. (2002). Nitrate controls on iron and arsenic in an urban lake. Science, 296, 2373–2376.

    Article  CAS  Google Scholar 

  • Senn, D. B., & Hemond, H. F. (2004). Particulate arsenic and iron during anoxia in a eutrophic, urban lake. Environmental Toxicology and Chemistry, 23, 1610–1616.

    Article  CAS  Google Scholar 

  • Seyler, P., & Martin, J. M. (1989). Biogeochemical processes affecting arsenic species distribution in a permanently stratified lake. Environmental Science & Technology, 23, 1258–1263.

    Article  CAS  Google Scholar 

  • Smedley, P. L., & Kinniburgh, D. G. (2002). A review of the source, behaviour and distribution of arsenic in natural waters. Applied Geochemistry, 17, 517–568.

    Article  CAS  Google Scholar 

  • Stoddard, J. L., Jeffries, D. S., Lukewille, A., Clair, T. A., Dillon, P. J., Driscoll, C. T., Forsius, M., Johannessen, M., Kahl, J. S., Kellogg, J. H., Kemp, A., Mannio, J., Monteith, D. T., Murdoch, P. S., Patrick, S., Rebsdorf, A., Skjelkvale, B. L., Stainton, M. P., Traaen, T., van Dam, H., Webster, K. E., Wieting, J., & Wilander, A. (1999). Regional trends in aquatic recovery from acidification in North America and Europe. Nature, 401, 575–578.

    Article  CAS  Google Scholar 

  • Suhendrayatna, O. A., Kuroiwa, T., & Maeda, S. (1999). Arsenic compounds in the freshwater green microalga Chlorella vulgaris after exposure to arsenite. Applied Organometallic Chemistry, 13, 127–133.

    Article  CAS  Google Scholar 

  • Tanner, C. C., & Clayton, J. S. (1990). Persistence of arsenic 24 years after sodium arsenite herbicide application to Lake Rotoroa, Hamilton, new-Zealand. New Zealand Journal of Marine and Freshwater Research, 24, 173–179.

    Article  CAS  Google Scholar 

  • Ulrich, K. U., Paul, L., & Meybohm, A. (2006). Response of drinking-water reservoir ecosystems to decreased acidic atmospheric deposition in SE Germany: Trends of chemical reversal. Environmental Pollution, 141, 42–53.

    Article  CAS  Google Scholar 

  • Vinogradov, A. P. (1962). Average contents of chemical elements in the principal types of igneous rocks of the Earth’s crust. (in Russian). Geokhimiya, 7, 641–664.

    Google Scholar 

  • Wallstedt, T., Bjorkvald, L., & Gustafsson, J. P. (2010). Increasing concentrations of arsenic and vanadium in (southern) Swedish streams. Applied Geochemistry, 25, 1162–1175.

    Article  Google Scholar 

  • Weinhold, G. (2002). Die Zinnerz-Lagerstätte Altenberg/Osterzgebirge (The Tin ore deposit Altenberg/East Ore Mountains). Freiberg: Sächsisches Landesamt für Umwelt und Geologie.

    Google Scholar 

  • Weiske, A., Schaller, J., Hegewald, T., Kranz, U., Feger, K. H., Werner, I., & Dudel, E. G. (2013a). Changes in catchment conditions lead to enhanced remobilization of arsenic in a water reservoir. The Science of the Total Environment, 449, 63–70.

    Article  CAS  Google Scholar 

  • Weiske, A., Schaller, J., Hegewald, T., Machill, S., Werner, I., & Dudel, E. G. (2013b). High mobilization of arsenic, metals and rare earth elements in seepage waters driven by respiration of old allochthonous organic carbon. Environmental Science: Processes and Impacts, 15, 2297–2303.

    CAS  Google Scholar 

  • Wetzel, R. G. (2001). Limnology: Lake and river ecosystems. Chapter 21: Sediments and Microflora. San Diego: Academic Press.

    Google Scholar 

  • Wood, S. N. (2011). Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear models. Journal of the Royal Statistical Society, Series B: Statistical Methodology, 73, 3–36.

    Article  Google Scholar 

  • Worrall, F., Burt, T., & Adamson, J. (2004). Can climate change explain increases in DOC flux from upland peat catchments? The Science of the Total Environment, 326, 95–112.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The experimental studies were funded by the State Reservoir Administration of Saxony. We thank the Paulsdorf and Tharandt laboratory staffs for sampling and analysis. Special thanks to Gunter Ilgen (BayCEER, Bayreuth, Germany) and Britta Planer-Friedrich (Bayreuth University, Germany) for methylated and thiolated speciation analysis and to Britta Planer-Friedrich for comments to the manuscript. We thank Silke Neu for language proofreading.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arndt Weiske.

Additional file

Additional file 1

Table S1: Spearman correlations of water parameters in the waters of the reservoir system, analyzed in biweekly values between May 2008 and September 2014. a) Spearman correlations of water parameters in Quergraben tributary. b) Spearman correlations of water parameters in Neugraben tributary. c) Spearman correlations of water parameters in Galgenteich water (transfer flow to Altenberg reservoir). d) Spearman correlations of water parameters in Altenberg reservoir water, depth profile 12.5 m deep. (DOC 109 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Weiske, A., Hegewald, T., Werner, I. et al. Enhanced Arsenic Mobility in a Dystrophic Water Reservoir System After Acidification Recovery. Water Air Soil Pollut 228, 285 (2017). https://doi.org/10.1007/s11270-017-3434-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-017-3434-1

Keywords

Navigation