Skip to main content
Log in

The fish embryo test (FET): origin, applications, and future

  • Danio rerio as a Model in Aquatic Toxicology and Sediment Research
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Originally designed as an alternative for the acute fish toxicity test according to, e.g., OECD TG 203, the fish embryo test (FET) with the zebrafish (Danio rerio) has been optimized, standardized, and validated during an OECD validation study and adopted as OECD TG 236 as a test to assess toxicity of embryonic forms of fish. Given its excellent correlation with the acute fish toxicity test and the fact that non-feeding developmental stages of fish are not categorized as protected stages according to the new European Directive 2010/63/EU on the protection of animals used for scientific purposes, the FET is ready for use not only for range-finding but also as a true alternative for the acute fish toxicity test, as required for a multitude of national and international regulations. If—for ethical reasons—not accepted as a full alternative, the FET represents at least a refinement in the sense of the 3Rs principle. Objections to the use of the FET have mainly been based on the putative lack of biotransformation capacity and the assumption that highly lipophilic and/or high molecular weight substances might not have access to the embryo due to the protective role of the chorion. With respect to bioactivation, the only substance identified so far as not being activated in the zebrafish embryo is allyl alcohol; all other biotransformation processes that have been studied in more detail so far were found to be present, albeit, in some cases, at lower levels than in adult fish. With respect to larger molecules, the extension of the test duration to 96 h (i.e., beyond hatch) has—at least for the substances tested so far—compensated for the reduced access to the embryo; however, more research is necessary to fully explore the applicability of the FET to substances with a molecular weight >3 kDa as well as substances with a neurotoxic mode of action. An extension of the endpoints to also cover sublethal endpoints makes the FET a powerful tool for the detection of teratogenicity, dioxin-like activity, genotoxicity and mutagenicity, neurotoxicity, as well as various forms of endocrine disruption.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Ahne W (1985) Untersuchungen über die Verwendung von Fischzellkulturen für Toxizitätsbestimmungen zur Einschränkung und Ersatz des Fischtests. Zbl Bakt Hyg 1 Abt Orig B 180:480–504

    CAS  Google Scholar 

  • Alderton W, Berghmans S, Butler P, Chassaing H, Fleming A, Golder Z, Richards FIG (2010) Accumulation and metabolism of drugs and CYP probe substrates in zebrafish larvae. Xenobiotica 40:547–557

    Article  CAS  Google Scholar 

  • Ankley G, Bencic D, Breen M, Collette T, Conolly R, Denslow ND, Edwards SW, Ekman DR, Garcia-Reyero N, Jensen KM, Lazorchak JM, Martinovic D, Miller DH, Perkins EJ, Orlando EF, Vielleneuve DL, Wang RL, Watanabe KH (2009) Endocrine disrupting chemicals in fish: developing exposure indicators and predictive models of effects based on mechanism of action. Aquat Toxicol 92:168–178

    Article  CAS  Google Scholar 

  • Asnani A, Peterson RT (2014) The zebrafish as a tool to identify novel therapies for human cardiovascular disease. Dis Model Mech 7:763–767

    Article  CAS  Google Scholar 

  • Bakkers J (2011) Zebrafish as a model to study cardiac development and human cardiac disease. Cardiovasc Res 91:279–288

    Article  CAS  Google Scholar 

  • Ball JS, Stedman DB, Hillegass JM, Zhang CX, Panzica-Kelly J, Coburn A, Enright BP, Tornesi B, Amouzadeh HR, Hetheridge M, Gustafson AL, Augustine-Rauch KA (2014) Fishing for teratogens: a consortium effort for a harmonized zebrafish developmental toxicology assay. Toxicol Sci 139:210–219

    Article  CAS  Google Scholar 

  • Baumann L, Knörr S, Keiter S, Nagel T, Rehberger K, Volz S, Oberrauch S, Schiller V, Fenske M, Holbech H, Segner H, Braunbeck T (2014a) Persistence of endocrine disruption in zebrafish (Danio rerio) after discontinued exposure to the androgen 17β-trenbolone. Environ Toxicol Chem. doi:10.1002/etc.2698:

    Google Scholar 

  • Baumann L, Knörr S, Keiter S, Rehberger K, Volz S, Schiller V, Fenske M, Holbech H, Segner H, Braunbeck T (2014b) Reversibility of endocrine disruption in zebrafish (Danio rerio) after discontinued exposure to the estrogen 17α-ethinylestradiol. Toxicol Appl Pharmacol 278:230–237

    Article  CAS  Google Scholar 

  • Belanger SE, Balon EK, Rawlings JM (2010) Saltatory ontogeny of fishes and sensitive early life stages for ecotoxicology tests. Aquat Toxicol 97:88–95

    Article  CAS  Google Scholar 

  • Belanger SE, Rawlings JM, Carr GJ (2013) Use of fish embryo toxicity tests for the prediction of acute fish toxicity to chemicals. Environ Toxicol Chem 32:1768–1783

    Article  CAS  Google Scholar 

  • Boettcher M, Kosmehl T, Braunbeck T (2011) Low-dose effects and biphasic effect profiles: is trenbolone a genotoxicant. Mutat Res 723:152–157

    Article  CAS  Google Scholar 

  • Bols NC, Boliska SA, Dixon DG, Hodson PV, Kaiser GLE (1985) The use of fish cell cultures as an indication of contaminant toxicity to fish. Aquat Toxicol 6:147–155

    Article  CAS  Google Scholar 

  • Bourrachot S, Brion F, Pereira S, Floriani M, Camilleri V, Cavalié I, Palluel O, Adam-Guillermin C (2014) Effects of depleted uranium on the reproductive success and F1 generation survival of zebrafish (Danio rerio). Aquat Toxicol 154:1–11

    Article  CAS  Google Scholar 

  • Brannen KC, Charlap JH, Lewis EM (2013) Zebrafish teratogenicity testing. Methods Mol Biol 947:383–401

    Article  CAS  Google Scholar 

  • Braunbeck T, Boettcher M, Hollert H, Kosmehl T, Lammer E, Leist E, Rudolf M, Seitz N (2005) Towards an alternative for the acute fish LC50 test in chemical assessment: the fish embryo toxicity test goes multi-species—an update. Altex 22:87–102

    Google Scholar 

  • Brion F, Le Page Y, Piccini B, Cardoso O, Tong S-K, Chung B-C, Kah O (2012) Screening estrogenic activities of chemicals or mixtures in vivo using transgenic (cyp19a1b-GFP) zebrafish embryos. PLoS One 7:e36069. doi:10.1371/journal.pone.0036069

    Article  CAS  Google Scholar 

  • Busch W, Duis K, Fenske M, Maack G, Legler J, Padilla S, Strähle U, Witters H, Scholz S (2011) The zebrafish embryo model in toxicology and teratology, September 2–3, 2010, Karlsruhe, Germany. Reprod Toxicol 31:585–588

    Article  CAS  Google Scholar 

  • Busquet F, Strecker R, Rawlings JM, Belanger SE, Braunbeck T, Carr GJ, Cenijn P, Fochtman P, Gourmelon A, Hübler N, Kleensang A, Knöbel M, Kussatz C, Legler J, Lillicrap A, Martínez-Jerónimo F, Polleichtner C, Rzodeczko H, Salinas E, Schneider KE, Scholz S, van den Brandhof E-J, van der Ven LTM, Walter-Rohde S, Weigt S, Witters H, Halder M (2014) OECD validation study to assess intra- and inter-laboratory reproducibility of the zebrafish embryo toxicity test for acute aquatic toxicity testing. Reg Tox Pharm 69:496–511

    Article  CAS  Google Scholar 

  • Campinho MA, Power DM (2013) Waterborne exposure of zebrafish embryos to micromole concentrations of ioxynil and diethylstilbestrol disrupts thyrocyte development. Aquat Toxicol 140–141:279–287

    Article  CAS  Google Scholar 

  • Castano A, Bols N, Braunbeck T, Dierichx P, Halder M, Isomaa B, Kawahara K, Lee LEJ, Mothersil PP, Repeto G, Sintes JR, Rufli H, Smith R, Wood C, Segner H (2003) The use of fish cells in ecotoxicology—the report and recommendations of ECVAM workshop 47. ATLA 31:317–351

    CAS  Google Scholar 

  • Chan WK, Chan KM (2012) Disruption of the hypothalamic-pituitary-thyroid axis in zebrafish embryo-larvae following waterborne exposure to BDE-47, TBBPA and BPA. Aquat Toxicol 108:106–111

    Article  CAS  Google Scholar 

  • Chen Q, Yu L, Yang L, Zhou B (2012) Bioconcentration and metabolism of decabromodiphenyl ether (BDE-209) result in thyroid endocrine disruption in zebrafish larvae. Aquat Toxicol 110–111:141–148

    Article  CAS  Google Scholar 

  • Cohen SP, LaChappelle AR, Walker BS, Lassiter CS (2014) Modulation of estrogen causes disruption of craniofacial chondrogenesis in Danio rerio. Aquat Toxicol 152:113–120

    Article  CAS  Google Scholar 

  • Dambly-Chaudière C, Sapède D, Soubiran F, Decorde K, Gompel N, Ghysen A (2003) The lateral line of zebrafish: a model system for the analysis of morphogenesis and neural development in vertebrates. Biol Cell 95:579–587

    Article  Google Scholar 

  • de Esch C, Slieker R, Wolterbeek APM, Woutersen RA, de Groot D (2012) Zebrafish as potential model for developmental neurotoxicity testing: a mini review. Neurotox Teratol 34:545–553

    Article  CAS  Google Scholar 

  • Delvecchio C, Tiefenbach J, Krause HM (2011) The zebrafish: a powerful platform for in vivo, HTS drug discovery. Assay Drug Dev Technol 9:354–361

    Article  CAS  Google Scholar 

  • DIN (2001) German standard methods for the examination of water, waste water and sludge—subanimal testing (group T)—part 6: toxicity to fish. Determination of the non-acute-poisonous effect of waste water to fish eggs by dilution limits (T 6). DIN 38415–6; German Standardization Organization

  • Dix DJ, Houck KA, Martin MT, Richard AM, Setzer RW, Kavlock RJ (2007) The ToxCast program for prioritizing toxicity testing of environmental chemicals. Toxicol Sci 95:5–12

    Article  CAS  Google Scholar 

  • Dong W, Macaulay LJ, Kwok KW, Hinton DE, Stapleton HM (2013) Using whole mount in situ hybridization to examine thyroid hormone deiodinase expression in embryonic and larval zebrafish: a tool for examining OH-BDE toxicity to early life stages. Auqat Toxicol 132–133:190–199

    Article  CAS  Google Scholar 

  • Embry MR, Belanger SE, Braunbeck T, Galay-Burgos M, Halder M, Hinton DE, Léonard MA, Lillicrap A, Norberg-King T, Whale G (2010) The fish embryo toxicity test as an animal alternative method in hazard and risk assessment and scientific research. Aquat Toxicol 97:79–87

    Article  CAS  Google Scholar 

  • EU (2000) Directive 2000/60/EC of the European Parliament and of the Council establishing a framework for the Community action in the field of water policy (EU Water Framework Directive). Off J EU 327:1–72

    Google Scholar 

  • EU (2006) Regulation (EC) No 1907/2006 of the European Parliament and of the Council of 18 December 2006 concerning the Registration, Evaluation, Authorisation and Restriction of Chemicals (REACH). Off J EU 396:1–849

    Google Scholar 

  • EU (2009) Regulation (EC) No 1223/2009 of the European Parliament and of the Council of 30 November 2009 on cosmetic products. Off J EU 342:59–209

    Google Scholar 

  • EU (2010) Directive 2010/63/EU of the European parliament and of the council of 22 September 2010 on the protection of animals used for scientific purposes. Off J EU 276:33–79

    Google Scholar 

  • Froehlicher M, Liedtke A, Groth KJ, Neuhauss SCF, Segner H, Eggen RIL (2009) Zebrafish (Danio rerio) neuromast: promising biological endpoint linking developmental and toxicological studies. Aquat Toxicol 95:307–319

    Article  CAS  Google Scholar 

  • Gao K, Brandt I, Goldstone JV, Jönsson ME (2011) Cytochrome P450 1A, 1B, and 1C mRNA induction patterns in three-spined stickleback exposed to a transient and a persistent inducer. Comp Biochem Phys 154C:42–55

    CAS  Google Scholar 

  • Ghysen A, Dambly-Chaudière C (2004) Development of the zebrafish lateral line. Curr Opin Neurobiol 14:67–73

    Article  CAS  Google Scholar 

  • Goldstein JA, Faletto MB (1993) Advances in mechanisms of activation and deactivation of environmental chemicals. Environ Health Perspect 100:169–176

    Article  CAS  Google Scholar 

  • Görge G, Nagel R (1990) Toxicity of lindane, atrazine, and deltamethrin to early life stages of zebrafish (Brachydanio rerio). Ecotoxicol Environ Saf 20:246–255

    Article  Google Scholar 

  • Grandjean P, Landrigan PJ (2006) Developmental neurotoxicity of industrial chemicals. Lancet 368:2167–2178

    Article  CAS  Google Scholar 

  • Gustafson AL, Stedman DB, Ball J, Hillegass JM, Flood A, Zhang CX, Panzica-Kelly J, Cao J, Coburn A, Enright BP, Tornesi MB, Hetheridge M, Augustine-Rauch KA (2012) Inter-laboratory assessment of a harmonized zebrafish developmental toxicology assay—progress report on phase I. Reprod Toxicol 33:155–164

    Article  CAS  Google Scholar 

  • Häfeli N, Schwartz P, Burkhardt-Holm P (2011) Embryotoxic and genotoxic potential of sewage system biofilm and river sediment in the catchment area of a sewage treatment plant in Switzerland. Ecotoxicol Environ Saf 74:1271–1279

    Article  CAS  Google Scholar 

  • Hanisch K, Küster E, Altenburger R, Gündel U (2010) Proteomic signatures of the zebrafish (Danio rerio) embryo: sensitivity and specificity in toxicity assessment of chemicals. Int J Proteomics 2010:1–13

    Article  CAS  Google Scholar 

  • Henn K, Braunbeck T (2011) Dechorionation as a tool to improve the fish embryo toxicity test (FET) with the zebrafish (Danio rerio). Comp Biochem Physiol 153C:91–98

    CAS  Google Scholar 

  • Ho NY, Yang L, Legradi J, Armant O, Takamiya M, Rastegar S, Strähle U (2013) Gene responses in the central nervous system of zebrafish embryos exposed to the neurotoxicant methyl mercury. Environ Sci Technol 47:3316–3325

    Article  CAS  Google Scholar 

  • Hong CC (2009) Large-scale small-molecule screen using zebrafish embryos. Methods Mol Biol 486:43–55

    Article  CAS  Google Scholar 

  • Hruscha A, Krawitz P, Rechenberg A, Heinrich V, Hecht J, Haass C, Schmid B (2013) Efficient CRISPR/Cas9 genome editing with low off-target effects in zebrafish. Development 140:4982–4987

    Article  CAS  Google Scholar 

  • Hwang WY, Fu Y, Reyon D, Maeder ML, Tsai SQ, Sander JD, Peterson RT, Yeh JR, Joung JK (2013) Efficient genome editing in zebrafish using a CRISPR-Cas system. Nat Biotechnol 31:227–229

    Article  CAS  Google Scholar 

  • Islinger M (2001) Nachweis Estrogen-induzierter Genexpression in Fischen und Hepatocytenprimärkulturen als Marker für endokrin wirksam Substanzen in der Umwelt. Dissertation Thesis, Ruprecht-Karls-Universität Heidelberg (in German), Heidelberg, 149 pp

  • ISO (2007) Water quality—determination of the acute toxicity of waste water to zebrafish eggs (Danio rerio). ISO 15088

  • Ito T, Handa H (2012) Deciphering the mystery of thalidomide teratogenicity. Congen Anomal 52:1–7

    Article  CAS  Google Scholar 

  • Ito T, Ando H, Suzuki T, Ogura T, Hotta K, Imamura Y, Yamaguchi Y, Handa H (2010) Identification of a primary target of thalidomide teratogenicity. Science 327:1345–1350

    Article  CAS  Google Scholar 

  • Ito T, Ando H, Handa H (2011) Teratogenic effects of thalidomide: molecular mechanisms. Cell Mol Life Sci 68:1569–1579

    Article  CAS  Google Scholar 

  • Jönsson ME, Jenny MJ, Woodin BR, Hahn ME, Stegeman JJ (2007) Role of AHR2 in the expression of novel cytochrome P450 1 family genes, cell cycle genes, and morphological defects in developing zebrafish exposed to 3,3′,4,4′,5- pentachlorobiphenyl or 2,3,7,8-tetrachlorodibenzo-p-dioxin. Toxicol Sci 100:180–193

    Article  CAS  Google Scholar 

  • Kais B, Schneider KE, Keiter S, Henn K, Ackermann C, Braunbeck T (2013) DMSO modifies the permeability of the zebrafish (Danio rerio) chorion—implications for the fish embryo test (FET). Aquat Toxicol 140–141:229–238

    Article  CAS  Google Scholar 

  • Keiter S, Rastall A, Kosmehl T, Wurm K, Erdinger L, Braunbeck T, Hollert H (2006) Ecotoxicological assessment of sediment, suspended matter and water samples in the upper Danube River. A pilot study in search for the causes for the decline of fish catches. Environ Sci Pollut Res Int 13:308–319

    Article  CAS  Google Scholar 

  • Klee N, Gustavsson L, Kosmehl T, Engwall M, Erdinger L, Braunbeck T, Hollert H (2004) Changes in toxicity and genotoxicity of industrial sewage sludge samples containing nitro- and amino-aromatic compounds following treatment in bioreactors with different oxygen regimes. Environ Sci Pollut Res 5:313–320

    Article  Google Scholar 

  • Klüver N, König M, Ortmann J, Massei R, Yu H, Paschke A, Kühne R, Scholz S (2014a) A systematic data analysis of fish embryo acute toxicity tests to define and improve the application domain. Environ Sci Technol submitted

  • Klüver N, Ortmann J, Paschke H, Renner P, Ritter AP, Scholz S (2014b) Transient overexpression of adh8a increases allyl alcohol toxicity in zebrafish embryos. PLoS One 9(3):e90619

    Article  CAS  Google Scholar 

  • Knöbel M, Busser FJM, Rico-Rico A, Kramer NI, Hermens JLM, Hafner C, Tanneberger K, Schirmer K, Scholz S (2012) Predicting adult fish acute lethality with the zebrafish embryo: relevance of test duration, endpoints, compound properties, and exposure concentration analysis. Environ Sci Technol 46:9690–9700

    Article  CAS  Google Scholar 

  • Kosmehl T, Krebs F, Werner M, Erdinger L, Braunbeck T, Hollert H (2004) Comparative genotoxicity testing of Rhine river sediments extracts using the comet assay with permanent fish cell lines (RTG-2 and RTL-W1) and the Ames test. J Soils Sediments 4:84–94

    Article  CAS  Google Scholar 

  • Kosmehl T, Hallare AV, Reifferscheid G, Manz W, Braunbeck T, Hollert H (2006) A novel contact assay for testing genotoxicity of chemicals and whole sediments in zebrafish embryos. Environ Toxicol Chem 25:2097–2106

    Article  CAS  Google Scholar 

  • Kosmehl T, Hallare AV, Braunbeck T, Hollert H (2008) DNA damage induced by genotoxicants in zebrafish (Danio rerio) embryos after contact exposure to freeze-dried sediment and sediment extracts from Laguna Lake (The Philippines) as measured by the comet assay. Mutat Res 650:1–14

    Article  CAS  Google Scholar 

  • Lammer E, Carr GJ, Wendler K, Rawlings JM, Belanger SE, Braunbeck T (2009) Is the fish embryo toxicity test (FET) with the zebrafish (Danio rerio) a potential alternative for the fish acute toxicity test. Comp Biochem Physiol 149C:196–209

    CAS  Google Scholar 

  • Lange M, Gebauer W, Markl J, Nagel R (1995) Comparison of testing acute toxicity on embryo of zebrafish, Brachydanio rerio and RGT-2 cytotoxicity as possible alternatives to the acute fish test. Chemosphere 30(11):2087–2102

    Article  CAS  Google Scholar 

  • Langheinrich U (2003) Zebrafish: a new model on the pharmaceutical catwalk. Bioessays 25:904–912

    Article  CAS  Google Scholar 

  • Lessman CA (2011) The developing zebrafish (Danio rerio): a vertebrate model for high-throughput screening of chemical libraries. Birth Defects Res C Embryo Today 93:268–280

    Article  CAS  Google Scholar 

  • Liu C, Yu H, Zhang X (2013) Zebrafish embryos/larvae for rapid determination of effects on hypothalamic-pituitary-thyroid (HPT) and hypothalamic-pituitary-interrenal (HPI) axis: mRNA expression. Chemosphere 93:2327–2332

    Article  CAS  Google Scholar 

  • Maack G, Segner H (2004) Life-stage-dependent sensitivity of zebrafish (Danio rerio) to estrogen exposure. Comp Biochem Physiol 139C:47–55

    CAS  Google Scholar 

  • McGee SP, Cooper EM, Stapleton HM, Volz DC (2012) Early zebrafish embryogenesis is susceptible to developmental TDCPP exposure. Environ Health Perspect 120:1585–1591

    Article  CAS  Google Scholar 

  • Miura GI, Yelon D (2011) A guide to analysis of cardiac phenotypes in the zebrafish embryo. Methods Cell Biol 101:161–180

    Article  Google Scholar 

  • Nagel R (1986) Untersuchungen zur Eiproduktion beim Zebrabaerbling (Brachydanio rerio, Ham.-Buch.). J Appl Ichthyol 2:173–181

    Article  Google Scholar 

  • Nagel R (1997) Development of a replacement method for the acute fish test. German Federal Ministry for Science and Education; project no. 0310506 A (in German)

  • Nagel R (2002) DarT: The embryo test with the zebrafish Danio rerio—a general model in ecotoxicology and toxicology. ALTEX 19:38–48

    Google Scholar 

  • Nagel R, Isberner C (1998) Testing of chemicals with fish - a critical evaluation of tests with special regard to zebrafish. In: Braunbeck T, Streit B, Hinton DE (eds) Fish ecotoxicology. Experientia Suppl. Series. Birkhäuser, Basel, pp 337–352

    Chapter  Google Scholar 

  • Ng AN, de Jong-Curtain TA, Mawdsley DJ, White SJ, Shin J, Appel B (2005) Formation of the digestive system in zebrafish: III. Intestinal epithelium morphogenesis. Dev Biol 286:114–135

    Article  CAS  Google Scholar 

  • OECD (1992) OECD guideline for the testing of chemicals. Section 2: effects on biotic systems. OECD Test Guideline 203: fish, acute toxicity test. Paris, France: Organization for Economic Cooperation and Development

  • OECD (2011a) Validation report (phase 1) for the zebrafish embryo toxicity test. Part 2: ENV/JM/MONO (2011)40. Series on Testing and Assessment 157:185 pp

  • OECD (2011b) Validation report (phase 1) for the zebrafish embryo toxicity test. Part I: ENV/JM/MONO (2011)37. Series on Testing and Assessment 157:123 pp

  • OECD (2012a) Annexes to the validation report (phase 2) for the zebrafish embryo toxicity test: ENV/JM/MONO (2012)25/ANN. Series on Testing and Assessment 179:362 pp

  • OECD (2012b) Fish toxicity framework. Series on Testing and Assessment-ENV/JM/MONO (2012)16 171:174 pp

  • OECD (2012c) Validation report (phase 2) for the zebrafish embryo toxicity test: ENV/JM/MONO (2012)25. Series on Testing and Assessment 57 pp

  • OECD (2013) OECD Guidelines for the testing of chemicals. Section 2: effects on biotic systems test no. 236: Fish embryo acute toxicity (FET) test. Paris, France: Organization for Economic Cooperation and Development

  • Opitz R, Maquet E, Huisken J, Antonica F, Trubiroha A, Pottier G, Janssens V, Costagliola S (2013) Transgenic zebrafish illuminate the dynamics of thyroid morphogenesis and its relationship to cardiovascular development. Dev Biol 372:203–216

    Article  CAS  Google Scholar 

  • Osterauer M, Faßbender C, Braunbeck T, Köhler H-R (2011) Genotoxicity of platinum in embryos of zebrafish (Danio rerio) and ramshorn snail (Marisa cornuarietis). Sci Total Environ 409:2114–2119

    Article  CAS  Google Scholar 

  • Otte J, Schmidt A, Hollert H, Braunbeck T (2010) Spatio-temporal development of CYP1 activity in early life-stages of zebrafish (Danio rerio). Aquat Toxicol 100:38–50

    Article  CAS  Google Scholar 

  • Padilla S, Hunter DL, Padnos B, Frady S, MacPhail RC (2011) Assessing locomotor activity in larval zebrafish: influence of extrinsic and intrinsic variables. Neurotox Teratol 33:624–630

    Article  CAS  Google Scholar 

  • Pei DS, Strauss PR (2013) Zebrafish as a model system to study DNA damage and repair. Mutat Res 743–744:1–9

    Google Scholar 

  • Pereira S, Bourrachot S, Cavalie I, Plaire D, Dutilleul M, Gilbin R, Adam-Guillermin C (2011) Genotoxicity of acute and chronic gamma-irradiation on zebrafish cells and consequences for embryo development. Environ Toxicol Chem 30:2831–2837

    Article  CAS  Google Scholar 

  • Porazzi P, Calebiro D, Benato F, Tiso N, Persani L (2009) Thyroid gland development and function in the zebrafish model. Mol Cell Endocrinol 27:14–23

    Article  CAS  Google Scholar 

  • Raldua D, Babin PJ (2009) Simple, rapid zebrafish larva bioassay for assessing the potential of chemical pollutants and drugs to disrupt thyroid gland function. Environ Sci Technol 43:6844–6850

    Article  CAS  Google Scholar 

  • Raldúa D, Thienpont B, Babin PJ (2012) Zebrafish eleutheroembryos as an alternative system for screening chemicals disrupting the mammalian thyroid gland morphogenesis and function. Reprod Toxicol 33:188–197

    Article  CAS  Google Scholar 

  • Reinardy HC, Dharamshi J, Jha AN, Henry TB (2013a) Changes in expression profiles of genes associated with DNA repair following induction of DNA damage in larval zebrafish Danio rerio. Mutagenesis 28:601–618

    Article  CAS  Google Scholar 

  • Reinardy HC, Syrett JR, Jeffree RA, Henry TB, Jha AN (2013b) Cobalt-induced genotoxicity in male zebrafish (Danio rerio), with implications for reproduction and expression of DNA repair genes. Aquat Toxicol 126:224–230

    Article  CAS  Google Scholar 

  • Rocha PS, Luvizotto GL, Kosmehl T, Böttcher M, Storch V, Braunbeck T, Hollert H (2009) Sediment genotoxicity in the Tiete River (Sao Paulo, Brazil): in vitro comet assay versus in situ micronucleus assay studies. Ecotox Environ Saf 72:1842–1848

    Article  CAS  Google Scholar 

  • Rubinstein AL (2006) Zebrafish assays for drug toxicity screening. Expert Opin Drug Metab Toxicol 2:231–240

    Article  CAS  Google Scholar 

  • Russell WMS, Burch RL (1959) The principles of humane experimental technique. Methuen, London, 238 pp

    Google Scholar 

  • Schiller V, Wichmann A, Kriehuber R, Muth-Köhne E, Giesy JP, Hecker M, Fenske M (2013a) Studying the effects of genistein on gene expression of fish embryos as an alternative testing approach for endocrine disruption. Comp Biochem Physiol 157C:41–53

    Google Scholar 

  • Schiller V, Wichmann A, Kriehuber R, Schäfers C, Fischer R, Fenske M (2013b) Transcriptome alterations in zebrafish embryos after exposure to environmental estrogens and anti-androgens can reveal endocrine disruption. Reprod Toxicol 42:210–223

    Article  CAS  Google Scholar 

  • Schiller V, Zhang X, Hecker M, Schäfers C, Fischer R, Fenske R (2014) Species-specific considerations in using the fish embryo test as an alternative to identify endocrine disruption. Aquat Toxicol 155:62–72

    Article  CAS  Google Scholar 

  • Schirmer K (2006) Proposal to improve vertebrate cell cultures to establish them as substitutes for the regulatory testing of chemicals and effluents using fish. Toxicology 224:163–183

    Article  CAS  Google Scholar 

  • Scholz S, Mayer I (2008) Molecular biomarkers of endocrine disruption in small model fish. Toxicology 293:57–70

    CAS  Google Scholar 

  • Scholz S, Fischer S, Gundel U, Kuster E, Luckenbach T, Voelker D (2008) The zebrafish embryo model in environmental risk assessment—applications beyond acute toxicity testing. Environ Sci Pollut Res Int 15:394–404

    Article  CAS  Google Scholar 

  • Scholz S, Sela E, Blaha L, Braunbeck T, Galay-Burgos M, García-Franco M, Guinea J, Klüver N, Schirmer K, Tanneberger K, Tobor-Kapłon M, Witters H, Belanger S, Benfenati E, Creton S, Cronin MTD, Eggen RIL, Embry M, Ekman D, Gourmelon A, Halder M, Hardy B, Hartung T, Hubesch B, Jungmann D, Lampi MA, Lee L, Léonard M, Küster E, Lillicrap A, Luckenbach T, Murk AJ, Navas JM, Peijnenburg W, Repetto G, Salinas E, Schüürmann G, Spielmann H, Tollefsen KE, Walter-Rohde S, Whale G, Wheeler JR, Winter MJ (2013) A European perspective on alternatives to animal testing for environmental hazard identification and risk assessment. Regul Toxicol Parmacol 67:506–530

    Article  Google Scholar 

  • Schulte C, Nagel R (1994) Testing acute toxicity in the embryo of zebrafish, Brachydanio rerio, as an alternative to the acute fish test - preliminary results. ATLA 22:12–19

    Google Scholar 

  • Segner H (2009) Zebrafish (Danio rerio) as a model organism for investigating endocrine disruption. Comp Biochem Phys 149C:187–195

    CAS  Google Scholar 

  • Seitz N, Böttcher M, Keiter S, Kosmehl T, Manz W, Hollert H, Braunbeck T (2008) A novel statistical approach for the evaluation of comet assay data. Mutat Res 652:38–45

    Article  CAS  Google Scholar 

  • Selderslaghs IWT, Van Rompay AR, De Coen W, Witters HE (2009) Development of a screening assay to identify teratogenic and embryotoxic chemicals using the zebrafish embryo. Reprod Toxicol 28:308–332

    Article  CAS  Google Scholar 

  • Selderslaghs IWT, Hooyberghs J, De Coen W, Witters HE (2010) Locomotor activity in zebrafish embryos: a new method to assess developmental neurotoxicity. Neurotoxicol Teratol 32:460–471

    Article  CAS  Google Scholar 

  • Selderslaghs I, Hooyberghs J, Blust R, Witters HE (2013) Assessment of the developmental neurotoxicity of compounds by measuring locomotor activity in zebrafish embryos and larvae. Neurotoxicol Teratol 37:44–56

    Article  CAS  Google Scholar 

  • Selderslaghs IWT, Blusb R, Witters HE (2012) Feasibility study of the zebrafish assay as an alternative method to screen for developmental toxicity and embryo toxicity using a training set of 27 compounds. Reprod Toxicol 33:142–154

    Article  CAS  Google Scholar 

  • Simon O, Massarin S, Coppin F, Hinton TG, Gilbin R (2011) Investigating the embryo/larval toxic and genotoxic effects of γ irradiation on zebrafish eggs. J Environ Radiact 102:1039–1044

    Article  CAS  Google Scholar 

  • Sipes NS, Padilla S, Knudsen TB (2011) Zebrafish: as an integrative model for twenty-first century toxicity testing. Birth Defects Res 93C:256–267

    Article  CAS  Google Scholar 

  • Spielmann H, Seiler A, Bremer S, Hareng L, Hartung T, Ahr H, Faustman E, Haas U, Moffat GJ, Nau H, Vanparys P, Piersma A, Sintes JR, Stuart J (2006) The practical application of three validated in vitro embryo toxicity tests. The report and recommendations of an ECVAM/ZEBET workshop (ECVAM workshop 57). Altern Lab Anim 34:527–538

    CAS  Google Scholar 

  • Staudt D, Stainier D (2012) Uncovering the molecular and cellular mechanisms of heart development using the zebrafish. Annu Rev Genet 46:397–418

    Article  CAS  Google Scholar 

  • Strähle U, Scholz S, Geisler R, Greiner P, Hollert H, Rastegar S, Schumacher A, Selderslaghs I, Weiss C, Witters H, Braunbeck T (2011) Zebrafish embryos as an alternative to animal experiments—a commentary on the definition of the onset of protected life stages in animal welfare regulations. Reprod Toxicol 33:245–153

    Google Scholar 

  • Strecker R, Weigt S, Braunbeck T (2013) Cartilage and bone malformations in the head of zebrafish (Danio rerio) embryos following exposure to disulfiram and acetic acid hydrazide. Toxicol Appl Phamracol 268:221–231

    Article  CAS  Google Scholar 

  • UK Environment Agency UE (2006) Integrated Pollution Prevention & Control (IPPC)—guidance on the use of direct toxicity assessment in PPC impact assessments. Available at www.publications.environment-agency.gov.uk. 44 pp

  • Tanneberger K, Knöbel M, Busser FJ, Sinnige TL, Hermens JL, Schirmer K (2013) Predicting fish acute toxicity using a fish gill cell line-based toxicity assay. Environ Sci Technol 47:1110–1119

    Article  CAS  Google Scholar 

  • Terrien X, Fini JB, Demeneix BA, Schramm KW, Prunet P (2011) Generation of fluorescent zebrafish to study endocrine disruption and potential crosstalk between thyroid hormone and corticosteroids. Aquat Toxicol 105:13–20

    Article  CAS  Google Scholar 

  • Thienpont B, Tingaud-Sequeira A, Prats E, Barata C, Babin PJ, Raldua D (2011) Zebrafish eleutheroembryos provide a suitable vertebrate model for screening chemicals that impair thyroid hormone synthesis. Environ Sci Technol 45:7525–7532

    Article  CAS  Google Scholar 

  • Thienpont B, Barata C, Raldúa D (2013) Modeling mixtures of thyroid gland function disruptors in a vertebrate alternative model, the zebrafish eleutheroembryo. Toxicol Appl Phamracol 269:169–175

    Article  CAS  Google Scholar 

  • Tierney KB (2011) Behavioural assessments of neurotoxic effects and neurodegeneration in zebrafish. Biochim Biophys Acta 1812:381–389

    Article  CAS  Google Scholar 

  • Tierney KB, Singh CR, Ross PS, Kennedy CJ (2007) Relating olfactory neurotoxicity to altered olfactory-mediated behaviors in rainbow trout exposed to three currently-used pesticides. Aquat Toxciol 81:55–64

    Article  CAS  Google Scholar 

  • Tierney KB, Baldwin DH, Hara TJ, Ross PS, Scholz NL, Kennedy CJ (2010) Olfactory toxicity in fishes. Aquat Toxicol 96:2–26

    Article  CAS  Google Scholar 

  • Tu S, Chi NC (2012) Zebrafish models in cardiac development and congenital heart birth defects. Differentiation 84

  • Usenko CY, Hopkins DC, Trumble SJ, Bruce ED (2012) Hydroxylated PBDEs induce developmental arrest in zebrafish. Toxicol Appl Pharmacol 262:43–51

    Article  CAS  Google Scholar 

  • Vincze K, Gehring M, Braunbeck T (2014) (Eco) toxicological effects of 2,4,7,9-tetramethyl-5-decyne-4,7-diol (TMDD) in zebrafish (Danio rerio) and permanent fish cell cultures. Environ Sci Pollut Res 21:8233–8241

    Article  CAS  Google Scholar 

  • Wang Q, Liang K, Liu J, Yang L, Guo Y, Liu C, Bingsheng Z (2013) Exposure of zebrafish embryos/larvae to TDCPP alters concentrations of thyroid hormones and transcriptions of genes involved in the hypothalamic-pituitary-thyroid axis. Aquat Toxicol 126:207–213

    Article  CAS  Google Scholar 

  • Weigt S, Busquet F, von Landenberg F, Braunbeck T, Huebler N, Broschard T (2008) Application of human and rat liver microsomes in teratogenicity testing using zebrafish Danio rerio embryos (mDarT). Toxicol Lett 180S:S96–S97

    Article  Google Scholar 

  • Weigt S, Hubler N, von Landenberg F, Braunbeck T, Broschard T (2009) Teratogenic effects of metabolically activated trimethadione in zebrafish (Danio rerio). Toxicol Lett 189:S143

    Article  Google Scholar 

  • Weigt S, Huebler N, Braunbeck T, von Landenberg F, Broschard TH (2010) Zebrafish teratogenicity test with metabolic activation (mDarT): effects of phase I activation of acetaminophen on zebrafish Danio rerio embryos. Toxicology 275:36–49

    Article  CAS  Google Scholar 

  • Weigt S, Huebler N, Strecker R, Braunbeck T, Broschard TH (2011) Zebrafish (Danio rerio) embryos as a model for testing proteratogens. Toxicology 281:25–36

    Article  CAS  Google Scholar 

  • Weigt S, Huebler N, Strecker R, Braunbeck T, Broschard TH (2012) Developmental effects of coumarin and the anticoagulant coumarin derivative warfarin on zebrafish (Danio rerio) embryos. Reprod Toxicol 33:133–141

    Article  CAS  Google Scholar 

  • Wilkinson RN, Jopling C, van Eeden FJ (2014) Zebrafish as a model of cardiac disease. Prog Mol Biol Transl Sci 124:65–91

    Article  CAS  Google Scholar 

  • Yan W, Zhou Y, Yang J, Li S, Hu D, Wang J, Chen J, Li G (2012) Waterborne exposure to microcystin-LR alters thyroid hormone levels and gene transcription in the hypothalamic-pituitary-thyroid axis in zebrafish larvae. Chemosphere 87:1301–1307

    Article  CAS  Google Scholar 

  • Yang L, Ho NY, Alshut R, Legradi J, Weiss C, Reischl M, Mikut R, Liebel U, Müller F, Strähle U (2009) Zebrafish embryos as models for embryotoxic and teratological effects of chemicals. Reprod Toxicol 28:245–253

    Article  CAS  Google Scholar 

  • Yu L, Chen M, Liu Y, Gui W, Zhu G (2013) Thyroid endocrine disruption in zebrafish larvae following exposure to hexaconazole and tebuconazole. Aquat Toxicol 138–139:35–42

    Article  CAS  Google Scholar 

  • Zheng X, Zhu Y, Liu C, Liu H, Giesy JP, Hecker M, Lam MH, Yu H (2012) Accumulation and biotransformation of BDE-47 by zebrafish larvae and teratogenicity and expression of genes along the hypothalamus-pituitary-thyroid axis. Environ Sci Technol 46:12943–1251

    Article  CAS  Google Scholar 

  • Zhong H, Lin S (2011) Chemical screening with zebrafish embryos. Methods Mol Biol 716:193–205

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Braunbeck.

Additional information

Responsible editor: Philippe Garrigues

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Braunbeck, T., Kais, B., Lammer, E. et al. The fish embryo test (FET): origin, applications, and future. Environ Sci Pollut Res 22, 16247–16261 (2015). https://doi.org/10.1007/s11356-014-3814-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-014-3814-7

Keywords

Navigation